Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-10-03

Smart Living Technologies in the Context of Improving the Quality of Life For Older People: The Case of the Humanoid Rudy Robot

Bialystok University of Technology
Bialystok University of Technology
smart living technologies ageing society older people Software Robots technology assessment

Abstract

Smart living is an essential dimension of an ageing society because one of its measures includes living conditions (health, safety, housing). Many technological solutions are designed to satisfy the needs of older people living in cities. Humanoid robots are one of the technologies that can significantly improve the quality of life in older adults. The Rudy Robot is an example of a robot adapted to the needs of older people. The conducted research aimed to gain knowledge about the potential future use of the humanoid Rudy Robot by older adults in the context of smart living. The study mainly aimed to identify the robot’s most important functionalities that could improve older adults’ quality of life based on a literature review. In addition, the Rudy Robot was rated according to the most important criteria for evaluating the robot. The paper also examined whether age, sex, education and place of residence affect the assessment of the Rudy Robot technology. It should be noted that this technology is not available in Poland but has become known due to television, the Internet, etc. Respondents received a description of this technology, examples of use, and links to literature and films together with the questionnaire; thus, they knew what the Rudy Robot was and its characteristics, possibilities and potential.

Metrics

Metrics Loading ...

References

  1. Angelini, L., Nyffeler, N., Caon, M., Jean-Mairet, M., Carrino, S., Mugellini, E. and Bergeron, L. (2013). Designing a Desirable Smart Bracelet for Older Adults, Proceedings of UbiComp’13, Zurich, Switzerland, 425-433. http://dx.doi.org/10.1145/2494091.2495974 DOI: https://doi.org/10.1145/2494091.2495974
  2. Arthanat, S., Wilcox, J., & Macuch, M. (2019). Profiles and Predictors of Smart Home Technology Adoption by Older Adults. OTJR. Occupation, Participation, and Health, 39(4), 247–256. http://doi.org/10.1177/1539449218813906 DOI: https://doi.org/10.1177/1539449218813906
  3. Baraniewicz-Kotasińska S. (2017). Smart city. Ujęcie nowych technologii w koncepcji inteligentnego miasta, Nowoczesne Systemy Zarządzania, 12, (3), 30. https://doi.org/10.37055/nsz/129410 DOI: https://doi.org/10.37055/nsz/129410
  4. Beer, J. M. Prakash, A. Mitzner, T.L., & Rogers, W.A. (2011). Understanding Robot Acceptance Technical Report HFA-TR-1103 Atlanta, GA: Georgia Institute of Technology School of Psychology Human Factors and Aging Laboratory, Retrieved from https://smartech.gatech.edu/bitstream/handle/1853/39672/HFA-TR-1103-RobotAcceptance.pdf, [21.04.2021].
  5. Bibri, S.E., Krogstie, J. (2017). Smart Sustainable Cities of the Future: An Extensive Interdisciplinary Literature Review. Sustainable Cities and Society, 31, p. 184. https://doi.org/10.1016/j.scs.2017.02.016 DOI: https://doi.org/10.1016/j.scs.2017.02.016
  6. Brooke, J., & Jackson D. (2020). Older people and COVID‐19: Isolation, risk and ageism, Journal of Clinical Nursing, 29(13-14), 2044-2046. http://doi.org/10.1111/jocn.15274 DOI: https://doi.org/10.1111/jocn.15274
  7. Cajita, M. I., Hodgson, N. A., Lam, K. W., Yoo, S., & Han, H. R. (2018). Facilitators of and Barriers to mHealth Adoption in Older Adults With Heart Failure. Computers, informatics, nursing: CIN, 36(8), 376–382. http:// doi.org/10.1097/CIN.0000000000000442 DOI: https://doi.org/10.1097/CIN.0000000000000442
  8. Cajita, M. I., Hodgson, N.A., Budhathoki, C., & Han, H. R. (2017). Intention to Use mHealth in Older Adults with Heart Failure. Journal of Cardiovascular Nursing, 32(6), E1–E7. http://doi.org/10.1097/JCN.0000000000000401 DOI: https://doi.org/10.1097/JCN.0000000000000401
  9. Caragliu, A., Bo, C., D, Nijkamp, P. (2009). Smart Cities in Europe, Journal of Urban Technology, 18 (2), 65-82. https://doi.org/10.1080/10630732.2011.601117 DOI: https://doi.org/10.1080/10630732.2011.601117
  10. Chan, M., Campo, E., Bourennane, W., Bettahar, F. and Charlon, Y. (2014) Mobility Behavior Assessment Using a Smart-Monitoring System to Care for the Elderly in a Hospital Environment, Proceedings of PETRA ‘14, 1-5. https://doi.org/10.1145/2674396.2674397 DOI: https://doi.org/10.1145/2674396.2674397
  11. Ejdys, J. (2020). Trust-Based Determinants of Future Intention to Use Technology. Foresight and STI Governance, 14(1), 60–68. DOI: 10.17323/2500-2597.2020.1.60.68 DOI: https://doi.org/10.17323/2500-2597.2020.1.60.68
  12. Ejdys, J., Halicka, K. (2018). Sustainable adaptation of new technology – The case of humanoids used for the care of older adults. Sustainability, 10(10), 3770. https://doi.org/10.3390/su10103770 DOI: https://doi.org/10.3390/su10103770
  13. Ester, M.-Martin; Angel, P. del Pobil (2018). Personal Robot Assistants for Elderly Care: An Overview. In Personal Assistants: Emerging Computational Technologies; Costa, A.; Julian, V.; Novais, P., Eds.; Publisher: Springer, Switzerland, 132, 77–91. http://dx.doi.org/10.1007/978-3-319-62530-0_5 DOI: https://doi.org/10.1007/978-3-319-62530-0_5
  14. EU Project. RAMCIP—Robotic Assistant for MCI Patients at Home. 2015–2020. Retrieved from https: //ramcip-project.eu [05.07.2022].)
  15. Ezer, N., Fisk, A. & Rogers, W. (2009). Attitudinal and intentional acceptance of domestic robots by younger and older adults. In C. Stephanidis (Eds.), Universal Access in Human-Computer Interaction. Ubiquitous Interaction Environments, 5615, 39-48. https://doi.org/10.1007%2F978-3-642-02710-9_5 DOI: https://doi.org/10.1007/978-3-642-02710-9_5
  16. Fraunhofer IPA, Care-O-Bot 3, Retrieved from https://www.care-o-bot.de/en/care-o-bot-3.html [30.06.2021].
  17. Görer, B.; Salah, A.A.; Akın, H.L (2016). An autonomous robotic exercise tutor for elderly people. Autonomous Robots, 41, 657–678. doi:10.1007/s10514-016-9598-5 DOI: https://doi.org/10.1007/s10514-016-9598-5
  18. Gudowsky N., Sotoudeha M., Caparia, L., Wilfing, H. (2017). Transdisciplinary forward-looking agenda setting for age-friendly, human centered cities. Futures, 90, 16-30. http://dx.doi.org/10.1016/j.futures.2017.05.005 DOI: https://doi.org/10.1016/j.futures.2017.05.005
  19. Halicka K. (2017). Main Concepts of Technology Analysis in the Light of the Literature on the Subject, Procedia Engineering, 182, 291-298. https://doi.org/10.1016/j.proeng.2017.03.196 DOI: https://doi.org/10.1016/j.proeng.2017.03.196
  20. Halicka K. (2019). Gerontechnology — the assessment of one selected technology improving the quality of life of older adults, Engineering Management in Production and Services, 11(2), 43-51. DOI: 10.2478/emj-2019-0010 DOI: https://doi.org/10.2478/emj-2019-0010
  21. Halicka K., Kacprzak D. (2021). Linear ordering of selected gerontechnologies using selected MCGDM methods, Technological and Economic Development of Economy, 27(4):947, 921-947. DOI:10.3846/tede.2021.15000. DOI: https://doi.org/10.3846/tede.2021.15000
  22. Halicka K., Surel D. (2021). Gerontechnology — new opportunities in the service of older adults, Engineering Management in Production and Services, 13(3), 114-126. DOI:10.2478/emj-2021-0025. DOI: https://doi.org/10.2478/emj-2021-0025
  23. Halicka, K. (2020). Technology selection using the TOPSIS method. Foresight and STI Governance, 14(1),85–96. https://doi.org/10.17323/2500-2597.2020.1.85.96 DOI: https://doi.org/10.17323/2500-2597.2020.1.85.96
  24. INF Robotics, Rudy, Retrieved from https://infrobotics.com/#rudy [30.06.2021].
  25. Infuture Hatalska Foresight Institute, Smart Living Report, 2019. Retrieved from https://www.innogy.pl/pl/~/media/Innogy-Group/Innogy/Polska/Dokumenty/Raporty/innogy_Raport_Smart_living.pdf?la=pl [30.06.2021].
  26. Joseph, A., Christian, B., Abiodun, A.A., Oyawale, F. (2018). A review on humanoid robotics in healthcare, MATEC Web of Conferences 153, 02004. https://doi.org/10.1051/matecconf/201815302004 DOI: https://doi.org/10.1051/matecconf/201815302004
  27. Langer, A., Ronit Feingold-Polaka, R., Mueller, O., Kellmeyer, P., & Levy-Tzedek, S. (2019), Trust in socially assistive robots: Considerations for use in rehabilitation. Neuroscience and Biobehavioral Reviews, 104, 231-239. https://doi.org/10.1016/j.neubiorev.2019.07.014 DOI: https://doi.org/10.1016/j.neubiorev.2019.07.014
  28. Luxton, D.D.; Riek, L.D. (2019). Artificial intelligence and robotics in rehabilitation. In Handbook of Rehabilitation Psychology; 3rd ed., American Psychological Association: Washington DC, 507–520. doi:10.1037/0000129-031. DOI: https://doi.org/10.1037/0000129-031
  29. Mann, H.B. and Whitney, D.R. (1947). On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Annals of Mathematical Statistics, 18, 50-60. http://dx.doi.org/10.1214/aoms/1177730491 DOI: https://doi.org/10.1214/aoms/1177730491
  30. Martinez-Martin, E. Escalona F., Cazorla, M. (2020). Socially Assistive Robots for Older Adults and People with Autism: An overview, Electronics, 9, 367, doi:10.3390/electronics9020367 DOI: https://doi.org/10.3390/electronics9020367
  31. Martinez-Martin, E.; Costa, A.; Cazorla, M. (2019). PHAROS 2.0—A Physical Assistant Robot System Improved. Sensors 19, 4531. doi:10.3390/s19204531 DOI: https://doi.org/10.3390/s19204531
  32. Nazarko, L. (2017). Future-oriented technology assessment. Procedia Engineering, 182, 504–509. https://doi.org/10.1016/j.proeng.2017.03.144 DOI: https://doi.org/10.1016/j.proeng.2017.03.144
  33. OECD, Ageing in Cities, 2015, Retrieved from https://www.oecd.org/cfe/regionaldevelopment/Policy-Brief-Ageing-in-Cities.pdf [30.06.2021].
  34. Oh, S.; Oh, Y.H.; Ju, D.Y. (2019). Understanding the Preference of the Elderly for Companion Robot Design Advances in Intelligent Systems and Computing; Springer International Publishing: New York City, 92–103. doi:10.1007/978-3-030-20467-9_9 DOI: https://doi.org/10.1007/978-3-030-20467-9_9
  35. Robotics Business Review, Rudy Assistive Robot Helps Elderly Age in Place, Retrieved from https://www.roboticsbusinessreview.com/rbr/rudy_assistive_robot_helps_elderly_age_in_place/ [30.06.2021].
  36. Robots. Your guide to the world of Robotics, Cody Robot, Retrieved from https://robots.ieee.org/robots/cody [30.06.2021]
  37. Rudy Assistive Robot Helps Elderly Age in Place, Retrieved from https://www.roboticsbusinessreview.com/rbr/rudy_assistive_robot_helps_elderly_age_in_place/ [05.07.2022].
  38. Softbank Robotics, Pepper Robot, Retrieved from https://www.softbankrobotics.com/emea/en/pepper [30.06.2021].
  39. Stawasz D., Sikora-Fernadez D. (2016). Koncepcja smart city na tle procesów i uwarunkowań rozwoju współczesnych miast. Wydawnictwo Uniwersytetu Łódzkiego, Łódź
  40. Stawasz, D., Sikora-Fernadez, D. (2015). Zarządzanie w polskich miastach zgodnie z koncepcją smart city, Wydawnictwo Placet. Warszawa.
  41. Szpilko, D. (2020). Foresight as a Tool for the Planning and Implementation of Visions for Smart City Development. Energies, 13, 1782. https://doi.org/10.3390/en13071782 DOI: https://doi.org/10.3390/en13071782
  42. Tannou T., Lihoreau T., Gagnon-Roy M., Grondin, M., Bier, N. (2022). Effectiveness of smart living environments to support older adults to age in place in their community: an umbrella review protocol, BMJ Open, 12(1):e054235. doi: 10.1136/bmjopen-2021-054235 DOI: https://doi.org/10.1136/bmjopen-2021-054235
  43. Tech-enhanced Life, Smart Living room features for older adults, Retrieved from https://www.techenhancedlife.com/citizen-research/smart-living-room-features-older-adults [23.02.2022].
  44. The Senior List, Smart Technology Enables Independent Living for Seniors, Retrieved from https://www.theseniorlist.com/blog/smart-technology-enable-independent-living-for-seniors/ [23.02.2022].
  45. United Nations, Word Population Ageing 2019 Highlights. Retrieved from https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Report.pdf [30.06.2021].
  46. Vienna University of Technology. (2007). Smart Cities. Ranking of European medium-sized cities, Retrieved from http://www.smart-cities.eu/download/smart_cities_final_report.pdf [30.06.2021]
  47. Willcoxon, F. (1945). Individual Comparisons by Ranking Methods, Biometrics Bulletin, 1(6), 80-83. https://doi.org/10.2307/3001968 DOI: https://doi.org/10.2307/3001968
  48. Wilson, G.; Pereyda, C.; Raghunath, N.; de la Cruz, G.; Goel, S.; Nesaei, S.; Minor, B.; Schmitter-Edgecombe, M.; Taylor, M.; Cook, D.J. (2019). Robot-enabled support of daily activities in smart home environments. Cognitive Systems Research, 54, 258–272. doi:10.1016/j.cogsys.2018.10.032 DOI: https://doi.org/10.1016/j.cogsys.2018.10.032
  49. Winkowska, J., Szpilko, D., Pejic, S. (2019). Smart city concept in the light of the literature review. Engineering Management in Production and Services, 11(2), 70-86. https://doi.org/10.2478/emj-2019-0012 DOI: https://doi.org/10.2478/emj-2019-0012

How to Cite

Halicka, K., & Surel, D. (2022). Smart Living Technologies in the Context of Improving the Quality of Life For Older People: The Case of the Humanoid Rudy Robot. Human Technology, 18(2), 191–208. https://doi.org/10.14254/1795-6889.2022.18-2.5