Skip to main content Skip to main navigation menu Skip to site footer
Published: 2022-06-30

Process management of ergonomic workplace based on augmented reality principles

Tomas Bata University in Zlín
Tomas Bata University in Zlín, Czech Republic
augmented reality virtual reality ergonomics Industry 4.0 nine pillars of Industry 4.0


Ergonomics is an important element of managing performance and productivity in a company. Nowadays, the ergonomic parameters are set in line with the implementation of the Industry 4.0 concept. The paper highlights the link between virtual reality (VR) and augmented reality (AR), when combined with the traditional ergonomic procedure.  Automation and digitization contribute to a significant extent to the creation of ergonomic workplaces and the elimination of the negative effects of non-ergonomic workplaces on people. The aim of the paper is to determine the essential elements of the system process approach to ergonomics management. This is achieved through an analysis of the current approaches from Industry 4.0 and a focus on the augmented reality approach. The backbone of the triple combination of "man-machine-environment" determines the ergonomic setting of work and the workplace. Subsequently, the presented case study examines the link between ergonomic workplace principles and data analytics for VR/AR technology. The scientific contribution of the paper lies in the discussion of the case study results, which is beneficial for the ergonomic design of workplaces.


Metrics Loading ...


  1. Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal [online]. Volume 22(3), 899-919, ISSN 22150986. doi:10.1016/j.jestch.2019.01.006 DOI:
  2. Alguliyev, R.M., FatalIev, T.Kh., & Mehdiyey, S.A. (2019). The industrial internet of things: the evolution of automation in the oil and gas. SOCAR Proceedings [online]. 2019, (2), 66-71, ISSN 22186867. doi:10.5510/OGP20190200391 DOI:
  3. Alladi, T., Chamola, V., Parizi, R.M., & Choo, K.K.R. (2021). Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access [online]. 2019, 7, 176935-176951, ISSN 2169-3536. doi:10.1109/ACCESS.2019.2956748 DOI:
  4. Aly, O. (2021). Assisting Vascular Surgery with Smartphone Augmented Reality. Cureus [online], ISSN 2168-8184. doi:10.7759/cureus.8020 DOI:
  5. Atzeni, G., Vignali, G., Tebaldi, L., & Bottani, E. (2021). A bibliometric analysis on collaborative robots in Logistics 4.0 environments. Procedia Computer Science [online], 180, 686-695, ISSN 18770509. doi:10.1016/j.procs.2021.01.291 DOI:
  6. Bai, Ch., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics [online], Volume 229. ISSN 09255273. doi:10.1016/j.ijpe.2020.107776 DOI:
  7. Beuss, F. Sender, J., & Flügge, W. (2019). Ergonomics Simulation in Aircraft Manufacturing – Methods and Potentials. Procedia CIRP [online], 81, 742-746, ISSN 22128271. doi:10.1016/j.procir.2019.03.187 DOI:
  8. Blankemeyer, S., Wiemann, R., Posniak, L., Pregizer, Ch., & Raatz, A. (2018). Intuitive Robot Programming Using Augmented Reality. Procedia CIRP [online], 76, 155-160, ISSN 22128271. doi:10.1016/j.procir.2018.02.028 DOI:
  9. Bona, G., Cesarotti, V., Arcese, G., & Gallo, T. (2021). Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Computer Science [online], 180, 424-429, ISSN 18770509. doi:10.1016/j.procs.2021.01.258 DOI:
  10. Borik, S., Kmecová, A., Gasová, M., & Gaso, M. (2019). Smart Glove to Measure a Grip Force of the Workers. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) [online]. IEEE, pp. 383-388, ISBN 978-1-7281-1864-2. doi:10.1109/TSP.2019.8768848 DOI:
  11. Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2020). Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Computers & Industrial Engineering [online], 139, ISSN 03608352. doi:10.1016/j.cie.2018.10.046 DOI:
  12. Cañas, H., Mula, J., Díaz-Madroñero, M. Trojanowska, J., Ciszak, O., Machado, J.M., & Pavlenko, I. (2019). Implementing Industry 4.0 principles. Computers & Industrial Engineering [online], 158, ISSN 03608352. doi:10.1016/j.cie.2021.107379 DOI:
  13. Chen, B, Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access [online], 6, 6505-6519. ISSN 2169-3536. doi:10.1109/ACCESS.2017.2783682 DOI:
  14. Chen, L., Li, L., & Zhao, L. (2019). Developing a Quick Response Product Configuration System under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method. Applied Sciences [online], 9(23), ISSN 2076-3417. doi:10.3390/app9235004 DOI:
  15. Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications [online], 19(2), 171-209, ISSN 1383-469X. doi:10.1007/s11036-013-0489-0 DOI:
  16. Chong, S., Pan, S.G.T., Chin, J., Show, P., Yang, T., & Huang, Ch.M. (2018). Integration of 3D Printing and Industry 4.0 into Engineering Teaching. Sustainability [online], 10(11), ISSN 2071-1050. doi:10.3390/su10113960 DOI:
  17. Constantinescu, C., Muresan, P.C., & Simon, G.M. (2016). JackEx: The New Digital Manufacturing Resource for Optimization of Exoskeleton-based Factory Environments. Procedia CIRP [online], 50, 508-511, ISSN 22128271. doi:10.1016/j.procir.2016.05.048 DOI:
  18. Csalódi, R., Süle, R.Z., Jaskó, S., Holcinger, T., Abonyi, J., & Han, R. (2021). Industry 4.0-Driven Development of Optimization Algorithms: A Systematic Overview. Complexity [online], 1-22, ISSN 1099-0526. doi:10.1155/2021/6621235 DOI:
  19. Danielsson, O., Syberfeldt, A., Brewster, R., & Wang, L. (2017). Assessing Instructions in Augmented Reality for Human-robot Collaborative Assembly by Using Demonstrators. Procedia CIRP [online], 63, 89-94, ISSN 22128271. doi:10.1016/j.procir.2017.02.038 DOI:
  20. Danielsson, O., Syberfeldt, A., Holm, M., & Wang, L. (2018). Operators perspective on augmented reality as a support tool in engine assembly. Procedia CIRP [online], 72, 45-50, ISSN 22128271. doi:10.1016/j.procir.2018.03.153 DOI:
  21. De looze, M.P., Bosch, T., Krause, F., Stadler, K.S., & O’Sullivan, L.W. (2015). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics [online], 59(5), 671-681, ISSN 0014-0139. doi:10.1080/00140139.2015.1081988 DOI:
  22. De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics [online], pp. 97-104. doi:10.1063/1.4907823 DOI:
  23. Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manufacturing [online], 11, 545-554, ISSN 23519789. doi:10.1016/j.promfg.2017.07.148 DOI:
  24. Dombeková, B., & Tuček, D. (2018). A new evaluation method of local muscular load at workplaces in Czech companies. Serbian Journal of Management [online]., 13(1), 157-171, ISSN 1452-4864. doi:10.5937/sjm13-12884 DOI:
  25. Du, J., & Duffy, V.G. (2007). A methodology for assessing industrial workstations using optical motion capture integrated with digital human models. Occupational Ergonomics [online], 7(1), 11-25, ISSN 18759092. doi:10.3233/OER-2007-7103 DOI:
  26. Enrique, D.V., Druczkoski, C.M., Lima, T.M., & Charrua-Santos, F. (2021). Advantages and difficulties of implementing Industry 4.0 technologies for labour flexibility. Procedia Computer Science [online], 181, 347-352, ISSN 18770509. doi:10.1016/j.procs.2021.01.177 DOI:
  27. Fennel, M., Zea, A., Mangler, J., Roennau, A. &, Hanebeck, U.D. (2022). Haptic Rendering of Arbitrary Serial Manipulators for Robot Programming. IEEE Control Systems Letters [online], 6, 716-721, ISSN 2475-1456. doi:10.1109/LCSYS.2021.3086059 DOI:
  28. Ferrari, E., Gamberi, M., Pilati, F., & Regattieri, A. (2018). Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes. IFAC-PapersOnLine [online], 51(11), 411-416, . ISSN 24058963. doi:10.1016/j.ifacol.2018.08.329 DOI:
  29. Fonseca, L., Amaral, A., & Oliveira, J. (2021). Quality 4.0: The EFQM 2020 Model and Industry 4.0 Relationships and Implications. Sustainability [online], 13(6), ISSN 2071-1050. doi:10.3390/su13063107 DOI:
  30. Forcina, A., & Falcone, D. (2021). The role of Industry 4.0 enabling technologies for safety management: A systematic literature review. Procedia Computer Science [online], 180, 436-445. ISSN 18770509. doi:10.1016/j.procs.2021.01.260 DOI:
  31. Fuertes, J.J., Prada, M.A., Rodriguez-Ossorio, J.R., Gonzales-Herbon, R., Perez, D., & Dominguez, M.(2021). Environment for Education on Industry 4.0. IEEE Access [online], 9, 144395-144405, ISSN 2169-3536. doi:10.1109/ACCESS.2021.3120517 DOI:
  32. Gallo, T., & Santolamazza, A. (2021). Industry 4.0 and human factor: How is technology changing the role of the maintenance operator? Procedia Computer Science [online], 180, 388-393, ISSN 18770509. doi:10.1016/j.procs.2021.01.364 DOI:
  33. Gao, Z., Wanyama, T., Singh, I., Gadhrri, A., & Schmidt, R. (2020). From Industry 4.0 to Robotics 4.0 - A Conceptual Framework for Collaborative and Intelligent Robotic Systems. Procedia Manufacturing [online], 46, 591-599, ISSN 23519789. doi:10.1016/j.promfg.2020.03.085 DOI:
  34. Gašová, M., Gašo, M., & Štefánik, A. (2017). Advanced Industrial Tools of Ergonomics Based on Industry 4.0 Concept. Procedia Engineering [online], 192, 219-224, ISSN 18777058. doi:10.1016/j.proeng.2017.06.038 DOI:
  35. Kadir, B.A., Broberg, O., & Conceição, C.S. (2019). Current research and future perspectives on human factors and ergonomics in Industry 4.0. Computers & Industrial Engineering [online], 137, ISSN 03608352. doi:10.1016/j.cie.2019.106004 DOI:
  36. Kaynak, B., Kaynak, S., & Uygun, O.(2020). Cloud Manufacturing Architecture Based on Public Blockchain Technology. IEEE Access [online], 8, 2163-2177, ISSN 2169-3536. doi:10.1109/ACCESS.2019.2962232 DOI:
  37. Khan, A., & Turowski, K. (2016). A Survey of Current Challenges in Manufacturing Industry and Preparation for Industry 4.0. Abraham, Ajith, Sergey Kovalev, Valery Tarassov a Václav Snášel, ed. Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16) [online]. Cham: Springer International Publishing, pp. 15-26 Advances in Intelligent Systems and Computing, ISBN 978-3-319-33608-4. doi:10.1007/978-3-319-33609-1_2 DOI:
  38. Kirmse, A., Kuschicke, F., & Hoffmann, M. (2019). Industrial Big Data: From Data to Information to Actions. In: Proceedings of the 4th International Conference on Internet of Things, Big Data and Security [online]. SCITEPRESS - Science and Technology Publications, pp. 137-146, ISBN 978-989-758-369-8. doi:10.5220/0007734501370146 DOI:
  39. Kmec, J. Karkova, M., & Majernik, J. (2018). PLANNING MANUFACTURING PROCESSES OF SURFACE FORMING WITHIN INDUSTRY 4.0. MM Science Journal [online], 12(2018), 2680-2685, ISSN 18031269. doi:10.17973/MMSJ.2018_12_201868 DOI:
  40. Kong, Y.K., Park, Ch.W., Cho, M. et al. (2021). Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations. International Journal of Environmental Research and Public Health [online], 18(10), ISSN 1660-4601. doi:10.3390/ijerph18105199 DOI:
  41. Kousi, N., Stoubos, Ch., Gkournelos, Ch. Michalos, G., & Makris, S. (2019). Enabling Human Robot Interaction in flexible robotic assembly lines: an Augmented Reality based software suite. Procedia CIRP [online], 81, 1429-1434, ISSN 22128271. doi:10.1016/j.procir.2019.04.328 DOI:
  42. Lee, H. Liau, Y. Kim.S., & Ryu, K. (2018). A Framework for Process Model Based Human-Robot Collaboration System Using Augmented Reality. Moon, Ilkyeong, Gyu M. Lee, Jinwoo Park, Dimitris Kiritsis a Gregor Von Cieminski, ed. Advances in Production Management Systems. Smart Manufacturing for Industry 4.0 [online]. Cham: Springer International Publishing, pp. 482-489, IFIP Advances in Information and Communication Technology. ISBN 978-3-319-99706-3. doi:10.1007/978-3-319-99707-0_60 DOI:
  43. Lenart-gansiniec, R. (2019). Organizational Learning in Industry 4.0. Problemy Zarzadzania [online], 82, pp. 96-108, ISSN 16449584. doi:10.7172/1644-9584.82.4 DOI:
  44. Lhotská, L. (2020). Application of Industry 4.0 Concept to Health Care. Studies in Health Technology and Informatics. (273), 23-37. doi:10.3233/SHTI200613
  45. Li, X., Li, D., Wan, J., Vasilakos, A.V., Lai, Ch.F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless Networks [online], 23(1), 23-41 , ISSN 1022-0038. doi:10.1007/s11276-015-1133-7 DOI:
  46. Liagkou, V. Stylios, Ch., Pappa, L., & Petunin, A. (2021). Challenges and Opportunities in Industry 4.0 for Mechatronics, Artificial Intelligence, and Cybernetics. Electronics [online], 10(16), ISSN 2079-9292. doi:10.3390/electronics10162001 DOI:
  47. Liao, Y., Deschamps, F., Loures, E.F.R., & Ramos, F.P. (2016). Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal. International Journal of Production Research [online], 55(12), 3609-3629, ISSN 0020-7543. doi:10.1080/00207543.2017.1308576 DOI:
  48. Lima, F., De Carvalho, C.N., Acardi, M.B.S, , Dos Santos, E.G., De Miranda, G.B., Maia, R.F., & Massote, A.A. (2019). Digital Manufacturing Tools in the Simulation of Collaborative Robots: Towards Industry 4.0. Brazilian Journal of Operations & Production Management [online], 16(2), 261-280 [cit. 2021-11-15]. ISSN 2237-8960. doi:10.14488/BJOPM.2019.v16.n2.a8 DOI:
  49. Lukoki, V. Varela, L., & Machado, J. (2020).. Simulation of Vertical and Horizontal Integration of Cyber-Physical Systems. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT) [online]. IEEE, pp. 282-287, ISBN 978-1-7281-5953-9. doi:10.1109/CoDIT49905.2020.9263876 DOI:
  50. Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M. Uva, A.E., Fiorentino, M. Carrabba, E & DiDonato, M. (2017). Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manufacturing [online], 11, 1296-1302, ISSN 23519789. doi:10.1016/j.promfg.2017.07.257 DOI:
  51. May, G. &Kiritsis, D. (2019). Zero Defect Manufacturing Strategies and Platform for Smart Factories of Industry 4.0. MONOSTORI, Laszlo, Vidosav D. MAJSTOROVIC, S. Jack HU a Dragan DJURDJANOVIC, ed. Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing [online]. Cham: Springer International Publishing, pp. 142-152, Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18179-6. doi:10.1007/978-3-030-18180-2_11 DOI:
  52. Michalos, G., Makris, S., Tsarouchi, P., Guasch, To, Kontovrakis, D., & Chryssolouris, G. (2015). Design Considerations for Safe Human-robot Collaborative Workplaces. Procedia CIRP [online], 37, 248-253, ISSN 22128271. doi:10.1016/j.procir.2015.08.014 DOI:
  53. Milošević, M. Lukić, D., Borojević, S., Antič, A., & Durdev, M. (2019). A Cloud-Based Process Planning System in Industry 4.0 Framework. MONOSTORI, Laszlo, Vidosav D. MAJSTOROVIC, S. Jack HU a Dragan DJURDJANOVIC, ed. Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing [online]. Cham: Springer International Publishing, pp. 202-211, Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18179-6. doi:10.1007/978-3-030-18180-2_16 DOI:
  54. Morgere, J.Ch., Diguet, J.P., & Laurent, J. (2014). Mobile Augmented Reality System for Marine Navigation Assistance. In: 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing [online]. IEEE, pp. 287-292, ISBN 978-0-7695-5249-1. doi:10.1109/EUC.2014.49 DOI:
  55. Mourtzis, D.E., Vlachou, E., Dimitrakopoulos, G., & Zogopoulos, V. (2018). Cyber- Physical Systems and Education 4.0 –The Teaching Factory 4.0 Concept. Procedia Manufacturing [online] 23, 129-134, ISSN 23519789. doi:10.1016/j.promfg.2018.04.005 DOI:
  56. Mourtzis, D.E., Zogopoulos, V., & Vlachou, E. (2017), . Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP [online], 63, 46-51, ISSN 22128271. doi:10.1016/j.procir.2017.03.154 DOI:
  57. Nascimento, J., & Cessa A. (2019). Use of Industry 4.0 Concepts to Use the “Voice of the Product” in the Product Development Process in the Automotive Industry. STARK, John, ed. Product Lifecycle Management (Volume 4): The Case Studies [online]. Cham: Springer International Publishing, pp. 223-232, Decision Engineering. ISBN 978-3-030-16133-0. doi:10.1007/978-3-030-16134-7_17 DOI:
  58. Ni.D., Yew, A.W.W., Ong, S.K., & Nee, Y.C.Y. (2017). Haptic and visual augmented reality interface for programming welding robots. Advances in Manufacturing [online], 5(3), 191-198, ISSN 2095-3127. doi:10.1007/s40436-017-0184-7 DOI:
  59. Nikolakis, N., Alexopoulos, K., Xanthakis, E., & Chryssolouris, G. (2018). The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing [online], 32(1), 1-12, ISSN 0951-192X. doi:10.1080/0951192X.2018.1529430 DOI:
  60. Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “The Internet of Things” and Next-Generation Technology Policy. OMICS: A Journal of Integrative Biology [online], 22(1), 65-76, ISSN 1557-8100. doi:10.1089/omi.2017.0194 DOI:
  61. Pacifico, I., Scano, A., Guanziroli, E, et. al. (2020). An Experimental Evaluation of the Proto-MATE: A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers' Physical Strain. IEEE Robotics & Automation Magazine [online], 27(1), 54-65, ISSN 1070-9932. doi:10.1109/MRA.2019.2954105 DOI:
  62. Pasquale, V., DeSimone, V., Salvatore, M., & Stefano, R. (2021). Smart operators: How Industry 4.0 is affecting the worker’s performance in manufacturing contexts. Procedia Computer Science [online], 180, 958-967, ISSN 18770509. doi:10.1016/j.procs.2021.01.347 DOI:
  63. Poor, P. Broum, T., & Basl, J. (2019). Role of Collaborative Robots in Industry 4.0 with Target on Education in Industrial Engineering. In: 2019 4th International Conference on Control, Robotics and Cybernetics (CRC) [online]. IEEE, pp. 42-46, ISBN 978-1-7281-4620-1. doi:10.1109/CRC.2019.00018 DOI:
  64. Prinsloo, J., Sinha, S., & Von Solms, B. (2019). A Review of Industry 4.0 Manufacturing Process Security Risks. Applied Sciences [online], 9(23), ISSN 2076-3417. doi:10.3390/app9235105 DOI:
  65. Puthenveetil, S.C., Daphalapurkar, Ch.P., Zhu, W., Leu, M.C., Liu, X.F. Gilpin-Mcminn, J.K., & Snodgrass, S.D. (2015). Computer-automated ergonomic analysis based on motion capture and assembly simulation. Virtual Reality [online], 19(2), 119-128, ISSN 1359-4338. doi:10.1007/s10055-015-0261-9 DOI:
  66. Reis, T., & Campos, F.C. (2020). Industry 4.0 influences on maintenance operation: a bibliometric analysis. IFAC-PapersOnLine [online], 53(2), 10633-10638, ISSN 24058963. doi:10.1016/j.ifacol.2020.12.2823 DOI:
  67. Renner, P., & Pfeiffer, T. (2017). Augmented Reality Assistance in the Central Field-of-View Outperforms Peripheral Displays for Order Picking: Results from a Virtual Reality Simulation Study. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) [online]. IEEE, pp. 176-181, ISBN 978-0-7695-6327-5. doi:10.1109/ISMAR-Adjunct.2017.59 DOI:
  68. Resende, A., Cerqueira, S., Barbosa, J., Damasio, E, Pombeiro, A., Silva, A., & Santos, C. (2021). Ergowear: an ambulatory, non-intrusive, and interoperable system towards a Human-aware Human-robot Collaborative framework. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) [online]. IEEE, pp. 4-28, s. 56-61, ISBN 978-1-6654-3198-9. doi:10.1109/ICARSC52212.2021.9429796 DOI:
  69. Sari, T., Gules, H.K., & Yigitol, B. (2020). Awareness and readiness of Industry 4.0: The case of Turkish manufacturing industry. Advances in Production Engineering & Management [online], 15(1), pp.57-68, ISSN 18546250. doi:10.14743/apem2020.1.349 DOI:
  70. Schmied, S., Grossman, D., Mathias, G.S., & Mueller, R.K. (2021). Integration of Manufacturing Information via Dynamic Information Model Aggregation. Vietnam Journal of Computer Science [online], 08(02), 245-262, ISSN 2196-8888. doi:10.1142/S219688882150010X DOI:
  71. Sgarbossa, F. Grosse, E.H., Neumann, W.P., Battini, D., & Glock, Ch.H. (2020). Human factors in production and logistics systems of the future. Annual Reviews in Control [online], 49, 295-305, ISSN 13675788. doi:10.1016/j.arcontrol.2020.04.007 DOI:
  72. Shahnazari, H., Mhaskar, P. House, J.M., & Salsbury, T.I. (2019). Modeling and fault diagnosis design for HVAC systems using recurrent neural networks. Computers & Chemical Engineering [online], 126, 189-203, ISSN 00981354. doi:10.1016/j.compchemeng.2019.04.011 DOI:
  73. Shuyang, L., Peng, G.Ch., & Xing, F. (2019). Barriers of embedding big data solutions in smart factories: insights from SAP consultants. Industrial Management & Data Systems [online], 119(5), 1147-1164, ISSN 0263-5577. doi:10.1108/IMDS-11-2018-0532 DOI:
  74. Silva, F.P. Barbosa, A.S., Dos Santos, L., & Otto, R.B. (2019). Proposal of an Augmented Operator for a Hydroelectric Power Plant. Hiekata, Kazuo, Bryan R. Moser, Masato Inoue, Josip Stjepandić a Nel Wognum, ed. Transdisciplinary Engineering for Complex Socio-technical Systems [online]. IOS Press, Advances in Transdisciplinary Engineering. ISBN 9781643680200. doi:10.3233/ATDE190176 DOI:
  75. Simeone, A. Caggiano, A., Boun, L., & Deng, B. (2019). Intelligent cloud manufacturing platform for efficient resource sharing in smart manufacturing networks. Procedia CIRP [online], 79, 233-238, ISSN 22128271. doi:10.1016/j.procir.2019.02.056 DOI:
  76. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial Informatics [online], 14(11), 4724-4734, ISSN1551-3203. doi:10.1109/TII.2018.2852491 DOI:
  77. Soares, I., Petry, M., & Moreira, A.P. (2021). Programming Robots by Demonstration Using Augmented Reality. Sensors [online], 21(17) [cit. 2021-11-28]. ISSN 1424-8220. doi:10.3390/s21175976 DOI:
  78. Sony, M. (2017). Industry 4.0 and lean management: a proposed integration model and research propositions. Production & Manufacturing Research [online], 6(1), 416-432, ISSN 2169-3277. doi:10.1080/21693277.2018.1540949 DOI:
  79. Sylla, N., Bonnet, N.V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics [online] 44(4), 475-481, ISSN 01698141. doi:10.1016/j.ergon.2014.03.008 DOI:
  80. Tagaytayan, R., Kelemen, A., & Sik-Lanyic. (2018). Augmented reality in neurosurgery. Archives of Medical Science [online], 14(3), 572-578, ISSN 1734-1922. doi:10.5114/aoms.2016.58690 DOI:
  81. Talha, M., Kalam, A.A., Elmarzoqyi, N. (2019). Big Data: Trade-off between Data Quality and Data Security. Procedia Computer Science [online], 151, 916-922, ISSN 18770509. doi:10.1016/j.procs.2019.04.127 DOI:
  82. Tao, J., & Yu, S. (2019). Developing Conceptual PSS Models of Upper Limb Exoskeleton based Post-stroke Rehabilitation in China. Procedia CIRP [online], 80, 750-755, ISSN 22128271. doi:10.1016/j.procir.2019.01.031 DOI:
  83. Trojanowska, J., Ciszak, O., Machado, J.M., & Pavlenko, I. (2019). Advances in Manufacturing II [online]. Springer International Publishing, pp. 176-189. Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18714-9. doi:10.1007/978-3-030-18715-6_15 DOI:
  84. Uddin, S.A., Hanna, G., Ross, L, Molina, C., Urakov, T., Johnson, P. Kim, T., & Drazin, D. (2021). Augmented Reality in Spinal Surgery: Highlights From Augmented Reality Lectures at the Emerging Technologies Annual Meetings. Cureus [online], ISSN 2168-8184. doi:10.7759/cureus.19165 DOI:
  85. Vidal-Balea, A., Blanco-Novoa, O., Fraga-Lamas, P., Vilar-Montesinos, M., & Fernández-Caramés, T.M. (2020). Creating Collaborative Augmented Reality Experiences for Industry 4.0 Training and Assistance Applications: Performance Evaluation in the Shipyard of the Future. Applied Sciences [online], 10(24), ISSN 2076-3417. doi:10.3390/app10249073 DOI:
  86. Vignais, N. Miezal, M. Bleser, G., Mura, K., Gorecky, D., & Marin, F. (2013). Innovative system for real-time ergonomic feedback in industrial manufacturing. Applied Ergonomics [online], 44(4), 566-574, ISSN 00036870. doi:10.1016/j.apergo.2012.11.008 DOI:
  87. Vosniakos, G.C., Deville, J., & Matsas, E. (2017). On Immersive Virtual Environments for Assessing Human-driven Assembly of Large Mechanical Parts. Procedia Manufacturing [online], 11, 1263-1270, ISSN 23519789. doi:10.1016/j.promfg.2017.07.253 DOI:
  88. Wang, D., Hu, B., Chen, W., Meng, Q., Liu, S., Ma, S, Li, X & Yu, H. (2021). Design and Preliminary Validation of a Lightweight Powered Exoskeleton During Level Walking for Persons With Paraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering [online], 29, 2112-2123, ISSN 1534-4320. doi:10.1109/TNSRE.2021.3118725 DOI:
  89. Wang, S., Wan, J., Li, D., & Zhang, Ch. (2016). Implementing Smart Factory of Industry 4.0: An Outlook. International Journal of Distributed Sensor Networks [online], 12(1), ISSN 1550-1477. doi:10.1155/2016/3159805 DOI:
  90. Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, Ch. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks [online], 101, 158-168, ISSN 13891286. doi:10.1016/j.comnet.2015.12.017 DOI:
  91. Wang, Z.B., Ng, L.X., Ong, S.K., & Nee, A.Y.C.(2013). Assembly planning and evaluation in an augmented reality environment. International Journal of Production Research [online], 51(23-24), 7388-7404, ISSN 0020-7543. doi:10.1080/00207543.2013.837986 DOI:
  92. Węgrzyn, G. (2020).. Structural changes in the manufacturing sector as an effect of implementing the concept of Industry 4.0. Studies of the Industrial Geography Commission of the Polish Geographical Society [online], 34(4), ISSN 2449-903X. doi:10.24917/20801653.344.7 DOI:
  93. Yew, A.E., Ong, S.K., & Nee, A.Y.C. (2017). Immersive Augmented Reality Environment for the Teleoperation of Maintenance Robots. Procedia CIRP [online], 61, 305-310, ISSN 22128271. doi:10.1016/j.procir.2016.11.183 DOI:
  94. Yigitbas, E., Jovanovik, J., & Engels, G. (2021). Simplifying Robot Programming Using Augmented Reality and End-User Development. Ardito, Carmelo, Rosa Lanzilotti, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda a Kori Inkpen, ed. Human-Computer Interaction – INTERACT 2021 [online], Springer International Publishing, pp. 631-651, Lecture Notes in Computer Science. ISBN 978-3-030-85622-9. doi:10.1007/978-3-030-85623-6_36 DOI:
  95. Yli-Ojanperä, M., Sierla, S., Papakonstantinou, N., & Vyatkin, V. (2019). Adapting an agile manufacturing concept to the reference architecture model industry 4.0: A survey and case study. Journal of Industrial Information Integration [online], 15, 147-160, ISSN 2452414X. doi:10.1016/j.jii.2018.12.002 DOI:
  96. Yoo, J.S., Patel, D.S., Hrynewycz, N.M. Brundage, T.S., & Singh, K. (2019). The utility of virtual reality and augmented reality in spine surgery. Annals of Translational Medicine [online], 7(S5), pp. 171-S171, ISSN 23055839. doi:10.21037/atm.2019.06.38 DOI:
  97. Zhong, R.Y., Xu, X., Klotz, E., & Newmann, S.T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering [online], 3(5), 616-630, ISSN 20958099. doi:10.1016/J.ENG.2017.05.015 DOI:

How to Cite

Holoči, J., & Chromjaková, F. (2022). Process management of ergonomic workplace based on augmented reality principles. Human Technology, 18(1), 66–91.