Skip to main content Skip to main navigation menu Skip to site footer
Articles
Published: 2022-06-30

Process management of ergonomic workplace based on augmented reality principles

Tomas Bata University in Zlín
Tomas Bata University in Zlín, Czech Republic
augmented reality virtual reality ergonomics Industry 4.0 nine pillars of Industry 4.0

Abstract

Ergonomics is an important element of managing performance and productivity in a company. Nowadays, the ergonomic parameters are set in line with the implementation of the Industry 4.0 concept. The paper highlights the link between virtual reality (VR) and augmented reality (AR), when combined with the traditional ergonomic procedure.  Automation and digitization contribute to a significant extent to the creation of ergonomic workplaces and the elimination of the negative effects of non-ergonomic workplaces on people. The aim of the paper is to determine the essential elements of the system process approach to ergonomics management. This is achieved through an analysis of the current approaches from Industry 4.0 and a focus on the augmented reality approach. The backbone of the triple combination of "man-machine-environment" determines the ergonomic setting of work and the workplace. Subsequently, the presented case study examines the link between ergonomic workplace principles and data analytics for VR/AR technology. The scientific contribution of the paper lies in the discussion of the case study results, which is beneficial for the ergonomic design of workplaces.

Metrics

Metrics Loading ...

References

  1. Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal [online]. Volume 22(3), 899-919, ISSN 22150986. doi:10.1016/j.jestch.2019.01.006 DOI: https://doi.org/10.1016/j.jestch.2019.01.006
  2. Alguliyev, R.M., FatalIev, T.Kh., & Mehdiyey, S.A. (2019). The industrial internet of things: the evolution of automation in the oil and gas. SOCAR Proceedings [online]. 2019, (2), 66-71, ISSN 22186867. doi:10.5510/OGP20190200391 DOI: https://doi.org/10.5510/OGP20190200391
  3. Alladi, T., Chamola, V., Parizi, R.M., & Choo, K.K.R. (2021). Blockchain Applications for Industry 4.0 and Industrial IoT: A Review. IEEE Access [online]. 2019, 7, 176935-176951, ISSN 2169-3536. doi:10.1109/ACCESS.2019.2956748 DOI: https://doi.org/10.1109/ACCESS.2019.2956748
  4. Aly, O. (2021). Assisting Vascular Surgery with Smartphone Augmented Reality. Cureus [online], ISSN 2168-8184. doi:10.7759/cureus.8020 DOI: https://doi.org/10.7759/cureus.8020
  5. Atzeni, G., Vignali, G., Tebaldi, L., & Bottani, E. (2021). A bibliometric analysis on collaborative robots in Logistics 4.0 environments. Procedia Computer Science [online], 180, 686-695, ISSN 18770509. doi:10.1016/j.procs.2021.01.291 DOI: https://doi.org/10.1016/j.procs.2021.01.291
  6. Bai, Ch., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics [online], Volume 229. ISSN 09255273. doi:10.1016/j.ijpe.2020.107776 DOI: https://doi.org/10.1016/j.ijpe.2020.107776
  7. Beuss, F. Sender, J., & Flügge, W. (2019). Ergonomics Simulation in Aircraft Manufacturing – Methods and Potentials. Procedia CIRP [online], 81, 742-746, ISSN 22128271. doi:10.1016/j.procir.2019.03.187 DOI: https://doi.org/10.1016/j.procir.2019.03.187
  8. Blankemeyer, S., Wiemann, R., Posniak, L., Pregizer, Ch., & Raatz, A. (2018). Intuitive Robot Programming Using Augmented Reality. Procedia CIRP [online], 76, 155-160, ISSN 22128271. doi:10.1016/j.procir.2018.02.028 DOI: https://doi.org/10.1016/j.procir.2018.02.028
  9. Bona, G., Cesarotti, V., Arcese, G., & Gallo, T. (2021). Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Computer Science [online], 180, 424-429, ISSN 18770509. doi:10.1016/j.procs.2021.01.258 DOI: https://doi.org/10.1016/j.procs.2021.01.258
  10. Borik, S., Kmecová, A., Gasová, M., & Gaso, M. (2019). Smart Glove to Measure a Grip Force of the Workers. In: 2019 42nd International Conference on Telecommunications and Signal Processing (TSP) [online]. IEEE, pp. 383-388, ISBN 978-1-7281-1864-2. doi:10.1109/TSP.2019.8768848 DOI: https://doi.org/10.1109/TSP.2019.8768848
  11. Bortolini, M., Faccio, M., Gamberi, M., & Pilati, F. (2020). Motion Analysis System (MAS) for production and ergonomics assessment in the manufacturing processes. Computers & Industrial Engineering [online], 139, ISSN 03608352. doi:10.1016/j.cie.2018.10.046 DOI: https://doi.org/10.1016/j.cie.2018.10.046
  12. Cañas, H., Mula, J., Díaz-Madroñero, M. Trojanowska, J., Ciszak, O., Machado, J.M., & Pavlenko, I. (2019). Implementing Industry 4.0 principles. Computers & Industrial Engineering [online], 158, ISSN 03608352. doi:10.1016/j.cie.2021.107379 DOI: https://doi.org/10.1016/j.cie.2021.107379
  13. Chen, B, Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access [online], 6, 6505-6519. ISSN 2169-3536. doi:10.1109/ACCESS.2017.2783682 DOI: https://doi.org/10.1109/ACCESS.2017.2783682
  14. Chen, L., Li, L., & Zhao, L. (2019). Developing a Quick Response Product Configuration System under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method. Applied Sciences [online], 9(23), ISSN 2076-3417. doi:10.3390/app9235004 DOI: https://doi.org/10.3390/app9235004
  15. Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications [online], 19(2), 171-209, ISSN 1383-469X. doi:10.1007/s11036-013-0489-0 DOI: https://doi.org/10.1007/s11036-013-0489-0
  16. Chong, S., Pan, S.G.T., Chin, J., Show, P., Yang, T., & Huang, Ch.M. (2018). Integration of 3D Printing and Industry 4.0 into Engineering Teaching. Sustainability [online], 10(11), ISSN 2071-1050. doi:10.3390/su10113960 DOI: https://doi.org/10.3390/su10113960
  17. Constantinescu, C., Muresan, P.C., & Simon, G.M. (2016). JackEx: The New Digital Manufacturing Resource for Optimization of Exoskeleton-based Factory Environments. Procedia CIRP [online], 50, 508-511, ISSN 22128271. doi:10.1016/j.procir.2016.05.048 DOI: https://doi.org/10.1016/j.procir.2016.05.048
  18. Csalódi, R., Süle, R.Z., Jaskó, S., Holcinger, T., Abonyi, J., & Han, R. (2021). Industry 4.0-Driven Development of Optimization Algorithms: A Systematic Overview. Complexity [online], 1-22, ISSN 1099-0526. doi:10.1155/2021/6621235 DOI: https://doi.org/10.1155/2021/6621235
  19. Danielsson, O., Syberfeldt, A., Brewster, R., & Wang, L. (2017). Assessing Instructions in Augmented Reality for Human-robot Collaborative Assembly by Using Demonstrators. Procedia CIRP [online], 63, 89-94, ISSN 22128271. doi:10.1016/j.procir.2017.02.038 DOI: https://doi.org/10.1016/j.procir.2017.02.038
  20. Danielsson, O., Syberfeldt, A., Holm, M., & Wang, L. (2018). Operators perspective on augmented reality as a support tool in engine assembly. Procedia CIRP [online], 72, 45-50, ISSN 22128271. doi:10.1016/j.procir.2018.03.153 DOI: https://doi.org/10.1016/j.procir.2018.03.153
  21. De looze, M.P., Bosch, T., Krause, F., Stadler, K.S., & O’Sullivan, L.W. (2015). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics [online], 59(5), 671-681, ISSN 0014-0139. doi:10.1080/00140139.2015.1081988 DOI: https://doi.org/10.1080/00140139.2015.1081988
  22. De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual definition and a review of key research topics [online], pp. 97-104. doi:10.1063/1.4907823 DOI: https://doi.org/10.1063/1.4907823
  23. Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., & Dolen, M. (2017). The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manufacturing [online], 11, 545-554, ISSN 23519789. doi:10.1016/j.promfg.2017.07.148 DOI: https://doi.org/10.1016/j.promfg.2017.07.148
  24. Dombeková, B., & Tuček, D. (2018). A new evaluation method of local muscular load at workplaces in Czech companies. Serbian Journal of Management [online]., 13(1), 157-171, ISSN 1452-4864. doi:10.5937/sjm13-12884 DOI: https://doi.org/10.5937/sjm13-12884
  25. Du, J., & Duffy, V.G. (2007). A methodology for assessing industrial workstations using optical motion capture integrated with digital human models. Occupational Ergonomics [online], 7(1), 11-25, ISSN 18759092. doi:10.3233/OER-2007-7103 DOI: https://doi.org/10.3233/OER-2007-7103
  26. Enrique, D.V., Druczkoski, C.M., Lima, T.M., & Charrua-Santos, F. (2021). Advantages and difficulties of implementing Industry 4.0 technologies for labour flexibility. Procedia Computer Science [online], 181, 347-352, ISSN 18770509. doi:10.1016/j.procs.2021.01.177 DOI: https://doi.org/10.1016/j.procs.2021.01.177
  27. Fennel, M., Zea, A., Mangler, J., Roennau, A. &, Hanebeck, U.D. (2022). Haptic Rendering of Arbitrary Serial Manipulators for Robot Programming. IEEE Control Systems Letters [online], 6, 716-721, ISSN 2475-1456. doi:10.1109/LCSYS.2021.3086059 DOI: https://doi.org/10.1109/LCSYS.2021.3086059
  28. Ferrari, E., Gamberi, M., Pilati, F., & Regattieri, A. (2018). Motion Analysis System for the digitalization and assessment of manual manufacturing and assembly processes. IFAC-PapersOnLine [online], 51(11), 411-416, . ISSN 24058963. doi:10.1016/j.ifacol.2018.08.329 DOI: https://doi.org/10.1016/j.ifacol.2018.08.329
  29. Fonseca, L., Amaral, A., & Oliveira, J. (2021). Quality 4.0: The EFQM 2020 Model and Industry 4.0 Relationships and Implications. Sustainability [online], 13(6), ISSN 2071-1050. doi:10.3390/su13063107 DOI: https://doi.org/10.3390/su13063107
  30. Forcina, A., & Falcone, D. (2021). The role of Industry 4.0 enabling technologies for safety management: A systematic literature review. Procedia Computer Science [online], 180, 436-445. ISSN 18770509. doi:10.1016/j.procs.2021.01.260 DOI: https://doi.org/10.1016/j.procs.2021.01.260
  31. Fuertes, J.J., Prada, M.A., Rodriguez-Ossorio, J.R., Gonzales-Herbon, R., Perez, D., & Dominguez, M.(2021). Environment for Education on Industry 4.0. IEEE Access [online], 9, 144395-144405, ISSN 2169-3536. doi:10.1109/ACCESS.2021.3120517 DOI: https://doi.org/10.1109/ACCESS.2021.3120517
  32. Gallo, T., & Santolamazza, A. (2021). Industry 4.0 and human factor: How is technology changing the role of the maintenance operator? Procedia Computer Science [online], 180, 388-393, ISSN 18770509. doi:10.1016/j.procs.2021.01.364 DOI: https://doi.org/10.1016/j.procs.2021.01.364
  33. Gao, Z., Wanyama, T., Singh, I., Gadhrri, A., & Schmidt, R. (2020). From Industry 4.0 to Robotics 4.0 - A Conceptual Framework for Collaborative and Intelligent Robotic Systems. Procedia Manufacturing [online], 46, 591-599, ISSN 23519789. doi:10.1016/j.promfg.2020.03.085 DOI: https://doi.org/10.1016/j.promfg.2020.03.085
  34. Gašová, M., Gašo, M., & Štefánik, A. (2017). Advanced Industrial Tools of Ergonomics Based on Industry 4.0 Concept. Procedia Engineering [online], 192, 219-224, ISSN 18777058. doi:10.1016/j.proeng.2017.06.038 DOI: https://doi.org/10.1016/j.proeng.2017.06.038
  35. Kadir, B.A., Broberg, O., & Conceição, C.S. (2019). Current research and future perspectives on human factors and ergonomics in Industry 4.0. Computers & Industrial Engineering [online], 137, ISSN 03608352. doi:10.1016/j.cie.2019.106004 DOI: https://doi.org/10.1016/j.cie.2019.106004
  36. Kaynak, B., Kaynak, S., & Uygun, O.(2020). Cloud Manufacturing Architecture Based on Public Blockchain Technology. IEEE Access [online], 8, 2163-2177, ISSN 2169-3536. doi:10.1109/ACCESS.2019.2962232 DOI: https://doi.org/10.1109/ACCESS.2019.2962232
  37. Khan, A., & Turowski, K. (2016). A Survey of Current Challenges in Manufacturing Industry and Preparation for Industry 4.0. Abraham, Ajith, Sergey Kovalev, Valery Tarassov a Václav Snášel, ed. Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16) [online]. Cham: Springer International Publishing, pp. 15-26 Advances in Intelligent Systems and Computing, ISBN 978-3-319-33608-4. doi:10.1007/978-3-319-33609-1_2 DOI: https://doi.org/10.1007/978-3-319-33609-1_2
  38. Kirmse, A., Kuschicke, F., & Hoffmann, M. (2019). Industrial Big Data: From Data to Information to Actions. In: Proceedings of the 4th International Conference on Internet of Things, Big Data and Security [online]. SCITEPRESS - Science and Technology Publications, pp. 137-146, ISBN 978-989-758-369-8. doi:10.5220/0007734501370146 DOI: https://doi.org/10.5220/0007734501370146
  39. Kmec, J. Karkova, M., & Majernik, J. (2018). PLANNING MANUFACTURING PROCESSES OF SURFACE FORMING WITHIN INDUSTRY 4.0. MM Science Journal [online], 12(2018), 2680-2685, ISSN 18031269. doi:10.17973/MMSJ.2018_12_201868 DOI: https://doi.org/10.17973/MMSJ.2018_12_201868
  40. Kong, Y.K., Park, Ch.W., Cho, M. et al. (2021). Guidelines for Working Heights of the Lower-Limb Exoskeleton (CEX) Based on Ergonomic Evaluations. International Journal of Environmental Research and Public Health [online], 18(10), ISSN 1660-4601. doi:10.3390/ijerph18105199 DOI: https://doi.org/10.3390/ijerph18105199
  41. Kousi, N., Stoubos, Ch., Gkournelos, Ch. Michalos, G., & Makris, S. (2019). Enabling Human Robot Interaction in flexible robotic assembly lines: an Augmented Reality based software suite. Procedia CIRP [online], 81, 1429-1434, ISSN 22128271. doi:10.1016/j.procir.2019.04.328 DOI: https://doi.org/10.1016/j.procir.2019.04.328
  42. Lee, H. Liau, Y. Kim.S., & Ryu, K. (2018). A Framework for Process Model Based Human-Robot Collaboration System Using Augmented Reality. Moon, Ilkyeong, Gyu M. Lee, Jinwoo Park, Dimitris Kiritsis a Gregor Von Cieminski, ed. Advances in Production Management Systems. Smart Manufacturing for Industry 4.0 [online]. Cham: Springer International Publishing, pp. 482-489, IFIP Advances in Information and Communication Technology. ISBN 978-3-319-99706-3. doi:10.1007/978-3-319-99707-0_60 DOI: https://doi.org/10.1007/978-3-319-99707-0_60
  43. Lenart-gansiniec, R. (2019). Organizational Learning in Industry 4.0. Problemy Zarzadzania [online], 82, pp. 96-108, ISSN 16449584. doi:10.7172/1644-9584.82.4 DOI: https://doi.org/10.7172/1644-9584.82.4
  44. Lhotská, L. (2020). Application of Industry 4.0 Concept to Health Care. Studies in Health Technology and Informatics. (273), 23-37. doi:10.3233/SHTI200613
  45. Li, X., Li, D., Wan, J., Vasilakos, A.V., Lai, Ch.F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless Networks [online], 23(1), 23-41 , ISSN 1022-0038. doi:10.1007/s11276-015-1133-7 DOI: https://doi.org/10.1007/s11276-015-1133-7
  46. Liagkou, V. Stylios, Ch., Pappa, L., & Petunin, A. (2021). Challenges and Opportunities in Industry 4.0 for Mechatronics, Artificial Intelligence, and Cybernetics. Electronics [online], 10(16), ISSN 2079-9292. doi:10.3390/electronics10162001 DOI: https://doi.org/10.3390/electronics10162001
  47. Liao, Y., Deschamps, F., Loures, E.F.R., & Ramos, F.P. (2016). Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal. International Journal of Production Research [online], 55(12), 3609-3629, ISSN 0020-7543. doi:10.1080/00207543.2017.1308576 DOI: https://doi.org/10.1080/00207543.2017.1308576
  48. Lima, F., De Carvalho, C.N., Acardi, M.B.S, , Dos Santos, E.G., De Miranda, G.B., Maia, R.F., & Massote, A.A. (2019). Digital Manufacturing Tools in the Simulation of Collaborative Robots: Towards Industry 4.0. Brazilian Journal of Operations & Production Management [online], 16(2), 261-280 [cit. 2021-11-15]. ISSN 2237-8960. doi:10.14488/BJOPM.2019.v16.n2.a8 DOI: https://doi.org/10.14488/BJOPM.2019.v16.n2.a8
  49. Lukoki, V. Varela, L., & Machado, J. (2020).. Simulation of Vertical and Horizontal Integration of Cyber-Physical Systems. In: 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT) [online]. IEEE, pp. 282-287, ISBN 978-1-7281-5953-9. doi:10.1109/CoDIT49905.2020.9263876 DOI: https://doi.org/10.1109/CoDIT49905.2020.9263876
  50. Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M. Uva, A.E., Fiorentino, M. Carrabba, E & DiDonato, M. (2017). Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manufacturing [online], 11, 1296-1302, ISSN 23519789. doi:10.1016/j.promfg.2017.07.257 DOI: https://doi.org/10.1016/j.promfg.2017.07.257
  51. May, G. &Kiritsis, D. (2019). Zero Defect Manufacturing Strategies and Platform for Smart Factories of Industry 4.0. MONOSTORI, Laszlo, Vidosav D. MAJSTOROVIC, S. Jack HU a Dragan DJURDJANOVIC, ed. Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing [online]. Cham: Springer International Publishing, pp. 142-152, Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18179-6. doi:10.1007/978-3-030-18180-2_11 DOI: https://doi.org/10.1007/978-3-030-18180-2_11
  52. Michalos, G., Makris, S., Tsarouchi, P., Guasch, To, Kontovrakis, D., & Chryssolouris, G. (2015). Design Considerations for Safe Human-robot Collaborative Workplaces. Procedia CIRP [online], 37, 248-253, ISSN 22128271. doi:10.1016/j.procir.2015.08.014 DOI: https://doi.org/10.1016/j.procir.2015.08.014
  53. Milošević, M. Lukić, D., Borojević, S., Antič, A., & Durdev, M. (2019). A Cloud-Based Process Planning System in Industry 4.0 Framework. MONOSTORI, Laszlo, Vidosav D. MAJSTOROVIC, S. Jack HU a Dragan DJURDJANOVIC, ed. Proceedings of the 4th International Conference on the Industry 4.0 Model for Advanced Manufacturing [online]. Cham: Springer International Publishing, pp. 202-211, Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18179-6. doi:10.1007/978-3-030-18180-2_16 DOI: https://doi.org/10.1007/978-3-030-18180-2_16
  54. Morgere, J.Ch., Diguet, J.P., & Laurent, J. (2014). Mobile Augmented Reality System for Marine Navigation Assistance. In: 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing [online]. IEEE, pp. 287-292, ISBN 978-0-7695-5249-1. doi:10.1109/EUC.2014.49 DOI: https://doi.org/10.1109/EUC.2014.49
  55. Mourtzis, D.E., Vlachou, E., Dimitrakopoulos, G., & Zogopoulos, V. (2018). Cyber- Physical Systems and Education 4.0 –The Teaching Factory 4.0 Concept. Procedia Manufacturing [online] 23, 129-134, ISSN 23519789. doi:10.1016/j.promfg.2018.04.005 DOI: https://doi.org/10.1016/j.promfg.2018.04.005
  56. Mourtzis, D.E., Zogopoulos, V., & Vlachou, E. (2017), . Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP [online], 63, 46-51, ISSN 22128271. doi:10.1016/j.procir.2017.03.154 DOI: https://doi.org/10.1016/j.procir.2017.03.154
  57. Nascimento, J., & Cessa A. (2019). Use of Industry 4.0 Concepts to Use the “Voice of the Product” in the Product Development Process in the Automotive Industry. STARK, John, ed. Product Lifecycle Management (Volume 4): The Case Studies [online]. Cham: Springer International Publishing, pp. 223-232, Decision Engineering. ISBN 978-3-030-16133-0. doi:10.1007/978-3-030-16134-7_17 DOI: https://doi.org/10.1007/978-3-030-16134-7_17
  58. Ni.D., Yew, A.W.W., Ong, S.K., & Nee, Y.C.Y. (2017). Haptic and visual augmented reality interface for programming welding robots. Advances in Manufacturing [online], 5(3), 191-198, ISSN 2095-3127. doi:10.1007/s40436-017-0184-7 DOI: https://doi.org/10.1007/s40436-017-0184-7
  59. Nikolakis, N., Alexopoulos, K., Xanthakis, E., & Chryssolouris, G. (2018). The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor. International Journal of Computer Integrated Manufacturing [online], 32(1), 1-12, ISSN 0951-192X. doi:10.1080/0951192X.2018.1529430 DOI: https://doi.org/10.1080/0951192X.2018.1529430
  60. Özdemir, V., & Hekim, N. (2018). Birth of Industry 5.0: Making Sense of Big Data with Artificial Intelligence, “The Internet of Things” and Next-Generation Technology Policy. OMICS: A Journal of Integrative Biology [online], 22(1), 65-76, ISSN 1557-8100. doi:10.1089/omi.2017.0194 DOI: https://doi.org/10.1089/omi.2017.0194
  61. Pacifico, I., Scano, A., Guanziroli, E, et. al. (2020). An Experimental Evaluation of the Proto-MATE: A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers' Physical Strain. IEEE Robotics & Automation Magazine [online], 27(1), 54-65, ISSN 1070-9932. doi:10.1109/MRA.2019.2954105 DOI: https://doi.org/10.1109/MRA.2019.2954105
  62. Pasquale, V., DeSimone, V., Salvatore, M., & Stefano, R. (2021). Smart operators: How Industry 4.0 is affecting the worker’s performance in manufacturing contexts. Procedia Computer Science [online], 180, 958-967, ISSN 18770509. doi:10.1016/j.procs.2021.01.347 DOI: https://doi.org/10.1016/j.procs.2021.01.347
  63. Poor, P. Broum, T., & Basl, J. (2019). Role of Collaborative Robots in Industry 4.0 with Target on Education in Industrial Engineering. In: 2019 4th International Conference on Control, Robotics and Cybernetics (CRC) [online]. IEEE, pp. 42-46, ISBN 978-1-7281-4620-1. doi:10.1109/CRC.2019.00018 DOI: https://doi.org/10.1109/CRC.2019.00018
  64. Prinsloo, J., Sinha, S., & Von Solms, B. (2019). A Review of Industry 4.0 Manufacturing Process Security Risks. Applied Sciences [online], 9(23), ISSN 2076-3417. doi:10.3390/app9235105 DOI: https://doi.org/10.3390/app9235105
  65. Puthenveetil, S.C., Daphalapurkar, Ch.P., Zhu, W., Leu, M.C., Liu, X.F. Gilpin-Mcminn, J.K., & Snodgrass, S.D. (2015). Computer-automated ergonomic analysis based on motion capture and assembly simulation. Virtual Reality [online], 19(2), 119-128, ISSN 1359-4338. doi:10.1007/s10055-015-0261-9 DOI: https://doi.org/10.1007/s10055-015-0261-9
  66. Reis, T., & Campos, F.C. (2020). Industry 4.0 influences on maintenance operation: a bibliometric analysis. IFAC-PapersOnLine [online], 53(2), 10633-10638, ISSN 24058963. doi:10.1016/j.ifacol.2020.12.2823 DOI: https://doi.org/10.1016/j.ifacol.2020.12.2823
  67. Renner, P., & Pfeiffer, T. (2017). Augmented Reality Assistance in the Central Field-of-View Outperforms Peripheral Displays for Order Picking: Results from a Virtual Reality Simulation Study. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) [online]. IEEE, pp. 176-181, ISBN 978-0-7695-6327-5. doi:10.1109/ISMAR-Adjunct.2017.59 DOI: https://doi.org/10.1109/ISMAR-Adjunct.2017.59
  68. Resende, A., Cerqueira, S., Barbosa, J., Damasio, E, Pombeiro, A., Silva, A., & Santos, C. (2021). Ergowear: an ambulatory, non-intrusive, and interoperable system towards a Human-aware Human-robot Collaborative framework. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) [online]. IEEE, pp. 4-28, s. 56-61, ISBN 978-1-6654-3198-9. doi:10.1109/ICARSC52212.2021.9429796 DOI: https://doi.org/10.1109/ICARSC52212.2021.9429796
  69. Sari, T., Gules, H.K., & Yigitol, B. (2020). Awareness and readiness of Industry 4.0: The case of Turkish manufacturing industry. Advances in Production Engineering & Management [online], 15(1), pp.57-68, ISSN 18546250. doi:10.14743/apem2020.1.349 DOI: https://doi.org/10.14743/apem2020.1.349
  70. Schmied, S., Grossman, D., Mathias, G.S., & Mueller, R.K. (2021). Integration of Manufacturing Information via Dynamic Information Model Aggregation. Vietnam Journal of Computer Science [online], 08(02), 245-262, ISSN 2196-8888. doi:10.1142/S219688882150010X DOI: https://doi.org/10.1142/S219688882150010X
  71. Sgarbossa, F. Grosse, E.H., Neumann, W.P., Battini, D., & Glock, Ch.H. (2020). Human factors in production and logistics systems of the future. Annual Reviews in Control [online], 49, 295-305, ISSN 13675788. doi:10.1016/j.arcontrol.2020.04.007 DOI: https://doi.org/10.1016/j.arcontrol.2020.04.007
  72. Shahnazari, H., Mhaskar, P. House, J.M., & Salsbury, T.I. (2019). Modeling and fault diagnosis design for HVAC systems using recurrent neural networks. Computers & Chemical Engineering [online], 126, 189-203, ISSN 00981354. doi:10.1016/j.compchemeng.2019.04.011 DOI: https://doi.org/10.1016/j.compchemeng.2019.04.011
  73. Shuyang, L., Peng, G.Ch., & Xing, F. (2019). Barriers of embedding big data solutions in smart factories: insights from SAP consultants. Industrial Management & Data Systems [online], 119(5), 1147-1164, ISSN 0263-5577. doi:10.1108/IMDS-11-2018-0532 DOI: https://doi.org/10.1108/IMDS-11-2018-0532
  74. Silva, F.P. Barbosa, A.S., Dos Santos, L., & Otto, R.B. (2019). Proposal of an Augmented Operator for a Hydroelectric Power Plant. Hiekata, Kazuo, Bryan R. Moser, Masato Inoue, Josip Stjepandić a Nel Wognum, ed. Transdisciplinary Engineering for Complex Socio-technical Systems [online]. IOS Press, Advances in Transdisciplinary Engineering. ISBN 9781643680200. doi:10.3233/ATDE190176 DOI: https://doi.org/10.3233/ATDE190176
  75. Simeone, A. Caggiano, A., Boun, L., & Deng, B. (2019). Intelligent cloud manufacturing platform for efficient resource sharing in smart manufacturing networks. Procedia CIRP [online], 79, 233-238, ISSN 22128271. doi:10.1016/j.procir.2019.02.056 DOI: https://doi.org/10.1016/j.procir.2019.02.056
  76. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial Informatics [online], 14(11), 4724-4734, ISSN1551-3203. doi:10.1109/TII.2018.2852491 DOI: https://doi.org/10.1109/TII.2018.2852491
  77. Soares, I., Petry, M., & Moreira, A.P. (2021). Programming Robots by Demonstration Using Augmented Reality. Sensors [online], 21(17) [cit. 2021-11-28]. ISSN 1424-8220. doi:10.3390/s21175976 DOI: https://doi.org/10.3390/s21175976
  78. Sony, M. (2017). Industry 4.0 and lean management: a proposed integration model and research propositions. Production & Manufacturing Research [online], 6(1), 416-432, ISSN 2169-3277. doi:10.1080/21693277.2018.1540949 DOI: https://doi.org/10.1080/21693277.2018.1540949
  79. Sylla, N., Bonnet, N.V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics [online] 44(4), 475-481, ISSN 01698141. doi:10.1016/j.ergon.2014.03.008 DOI: https://doi.org/10.1016/j.ergon.2014.03.008
  80. Tagaytayan, R., Kelemen, A., & Sik-Lanyic. (2018). Augmented reality in neurosurgery. Archives of Medical Science [online], 14(3), 572-578, ISSN 1734-1922. doi:10.5114/aoms.2016.58690 DOI: https://doi.org/10.5114/aoms.2016.58690
  81. Talha, M., Kalam, A.A., Elmarzoqyi, N. (2019). Big Data: Trade-off between Data Quality and Data Security. Procedia Computer Science [online], 151, 916-922, ISSN 18770509. doi:10.1016/j.procs.2019.04.127 DOI: https://doi.org/10.1016/j.procs.2019.04.127
  82. Tao, J., & Yu, S. (2019). Developing Conceptual PSS Models of Upper Limb Exoskeleton based Post-stroke Rehabilitation in China. Procedia CIRP [online], 80, 750-755, ISSN 22128271. doi:10.1016/j.procir.2019.01.031 DOI: https://doi.org/10.1016/j.procir.2019.01.031
  83. Trojanowska, J., Ciszak, O., Machado, J.M., & Pavlenko, I. (2019). Advances in Manufacturing II [online]. Springer International Publishing, pp. 176-189. Lecture Notes in Mechanical Engineering. ISBN 978-3-030-18714-9. doi:10.1007/978-3-030-18715-6_15 DOI: https://doi.org/10.1007/978-3-030-18715-6_15
  84. Uddin, S.A., Hanna, G., Ross, L, Molina, C., Urakov, T., Johnson, P. Kim, T., & Drazin, D. (2021). Augmented Reality in Spinal Surgery: Highlights From Augmented Reality Lectures at the Emerging Technologies Annual Meetings. Cureus [online], ISSN 2168-8184. doi:10.7759/cureus.19165 DOI: https://doi.org/10.7759/cureus.19165
  85. Vidal-Balea, A., Blanco-Novoa, O., Fraga-Lamas, P., Vilar-Montesinos, M., & Fernández-Caramés, T.M. (2020). Creating Collaborative Augmented Reality Experiences for Industry 4.0 Training and Assistance Applications: Performance Evaluation in the Shipyard of the Future. Applied Sciences [online], 10(24), ISSN 2076-3417. doi:10.3390/app10249073 DOI: https://doi.org/10.3390/app10249073
  86. Vignais, N. Miezal, M. Bleser, G., Mura, K., Gorecky, D., & Marin, F. (2013). Innovative system for real-time ergonomic feedback in industrial manufacturing. Applied Ergonomics [online], 44(4), 566-574, ISSN 00036870. doi:10.1016/j.apergo.2012.11.008 DOI: https://doi.org/10.1016/j.apergo.2012.11.008
  87. Vosniakos, G.C., Deville, J., & Matsas, E. (2017). On Immersive Virtual Environments for Assessing Human-driven Assembly of Large Mechanical Parts. Procedia Manufacturing [online], 11, 1263-1270, ISSN 23519789. doi:10.1016/j.promfg.2017.07.253 DOI: https://doi.org/10.1016/j.promfg.2017.07.253
  88. Wang, D., Hu, B., Chen, W., Meng, Q., Liu, S., Ma, S, Li, X & Yu, H. (2021). Design and Preliminary Validation of a Lightweight Powered Exoskeleton During Level Walking for Persons With Paraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering [online], 29, 2112-2123, ISSN 1534-4320. doi:10.1109/TNSRE.2021.3118725 DOI: https://doi.org/10.1109/TNSRE.2021.3118725
  89. Wang, S., Wan, J., Li, D., & Zhang, Ch. (2016). Implementing Smart Factory of Industry 4.0: An Outlook. International Journal of Distributed Sensor Networks [online], 12(1), ISSN 1550-1477. doi:10.1155/2016/3159805 DOI: https://doi.org/10.1155/2016/3159805
  90. Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, Ch. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks [online], 101, 158-168, ISSN 13891286. doi:10.1016/j.comnet.2015.12.017 DOI: https://doi.org/10.1016/j.comnet.2015.12.017
  91. Wang, Z.B., Ng, L.X., Ong, S.K., & Nee, A.Y.C.(2013). Assembly planning and evaluation in an augmented reality environment. International Journal of Production Research [online], 51(23-24), 7388-7404, ISSN 0020-7543. doi:10.1080/00207543.2013.837986 DOI: https://doi.org/10.1080/00207543.2013.837986
  92. Węgrzyn, G. (2020).. Structural changes in the manufacturing sector as an effect of implementing the concept of Industry 4.0. Studies of the Industrial Geography Commission of the Polish Geographical Society [online], 34(4), ISSN 2449-903X. doi:10.24917/20801653.344.7 DOI: https://doi.org/10.24917/20801653.344.7
  93. Yew, A.E., Ong, S.K., & Nee, A.Y.C. (2017). Immersive Augmented Reality Environment for the Teleoperation of Maintenance Robots. Procedia CIRP [online], 61, 305-310, ISSN 22128271. doi:10.1016/j.procir.2016.11.183 DOI: https://doi.org/10.1016/j.procir.2016.11.183
  94. Yigitbas, E., Jovanovik, J., & Engels, G. (2021). Simplifying Robot Programming Using Augmented Reality and End-User Development. Ardito, Carmelo, Rosa Lanzilotti, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda a Kori Inkpen, ed. Human-Computer Interaction – INTERACT 2021 [online], Springer International Publishing, pp. 631-651, Lecture Notes in Computer Science. ISBN 978-3-030-85622-9. doi:10.1007/978-3-030-85623-6_36 DOI: https://doi.org/10.1007/978-3-030-85623-6_36
  95. Yli-Ojanperä, M., Sierla, S., Papakonstantinou, N., & Vyatkin, V. (2019). Adapting an agile manufacturing concept to the reference architecture model industry 4.0: A survey and case study. Journal of Industrial Information Integration [online], 15, 147-160, ISSN 2452414X. doi:10.1016/j.jii.2018.12.002 DOI: https://doi.org/10.1016/j.jii.2018.12.002
  96. Yoo, J.S., Patel, D.S., Hrynewycz, N.M. Brundage, T.S., & Singh, K. (2019). The utility of virtual reality and augmented reality in spine surgery. Annals of Translational Medicine [online], 7(S5), pp. 171-S171, ISSN 23055839. doi:10.21037/atm.2019.06.38 DOI: https://doi.org/10.21037/atm.2019.06.38
  97. Zhong, R.Y., Xu, X., Klotz, E., & Newmann, S.T. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering [online], 3(5), 616-630, ISSN 20958099. doi:10.1016/J.ENG.2017.05.015 DOI: https://doi.org/10.1016/J.ENG.2017.05.015

How to Cite

Holoči, J., & Chromjaková, F. (2022). Process management of ergonomic workplace based on augmented reality principles. Human Technology, 18(1), 66–91. https://doi.org/10.14254/1795-6889.2022.18-1.5