Skip to main content Skip to main navigation menu Skip to site footer
Published: 2021-12-31

Determinants of the adoption of AI wearables - practical implications for marketing

Institute of Public Affairs, Jagiellonian University in Cracow, Poland
Department of Marketing, Faculty of Management, University of Lodz, Poland
wearable technology artificial intelligence consumer augmented intelligence marketing


Wearables have become a natural element of human life, determining our way of perceiving, understanding and experiencing the world. Enriched with elements of artificial intelligence, they will change our habits and draw us into the digital dimension of the world - a space of uninterrupted interaction between people and technology. As a result, there are still new ideas for the effective use of AI wearables in the consumer space. The main aim of the article is to examine the determinants behind the acceptance of the AI wearables, with particular emphasis on the strength and nature of the relationship between the consumer and technology. The UTAUT2 model is used for this purpose. The article is a continuation of the previous reflections and analyses in this area; at the same time it constitutes an initial stage of research on the issues related to the adoption of AI wearables.


Metrics Loading ...


  1. von Ahn, L. (2013). Augmented intelligence: the Web and human intelligence. Philosophical Transactions of the Royal Society, 371, doi:10.1098/rsta.2012.
  2. Alalwan, A.A., Dwivedi, Y.K. & Rana, N.P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110, doi:10.1016/j.ijinfomgt.2017.01.002.
  3. Brown, S. A. & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Quarterly, 29(3), 399-426. doi:10.2307/25148690.
  4. Canhoto, A.I., Arp, S. (2017). Exploring the factors that support adoption and sustained use of health and fitness wearables, Journal of Marketing Management, 33(1-2), 32-60, doi: 10.1080/0267257X.2016.1234505
  5. Chau, K. Y., Lam, M. H., Cheung, M. L., Tso, E. K., Flint, S. W., Broom, D. R., Tse, G., & Lee, K. Y. (2019). Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology. Health Psychology Research, 7(1), doi:10.4081/hpr.2019.8099
  6. Chen, Y.K. (2012), Challenges and opportunities of internet of things, paper presented at the 17th Asia and South Pacific design Automation Conference, January 30-February 2, Sydney, Australia.
  7. Chen, M., Ma, Y., Song, J., Lai, C. F., & Hu, B. (2016). Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications, 21(5), 825–845, doi:10.1007/s1103 6‑016‑0745‑1.
  8. Cheung, M.L., Leung, K.S. & Chan, H.S.(2020). Driving healthcare wearable technology adoption for Generation Z consumers in Hong Kong. Young Consumers, Emerald Publishing, doi:10.1108/YC-04-2020-1123.
  9. Choi, J. & Kim, S. (2016). Is the smartwatch an IT product or a fashion product? A study on factors affecting the intention to use smartwatches. Computers in Human Behavior, 63, 777-786, doi:10.1016/j.chb.2016.06.007.
  10. Chuah, S.H., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T. & Lade, S. (2016). Wearable technologies: the role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276-284, doi:
  11. Colgan, J. C., Bopp, M. J., Starkoff, B. E., & Lieberman, L. J. (2016). Fitness wearables and youths with visual impairments: Implications for practice and application. Journal of Visual Impairment & Blindness, 110, 335-348, doi: 10.1177/0145482X1611000505.
  12. Corrigan, J.M. (2012). Augmented intelligence-the new AI-unleashing human capabilities in knowledge work. In M. Glinz (Ed.), Proceedings of the 34th International Conference on Software Engineering. IEEE Press, Piscataway, 1285-1288.
  13. Crigger, E. & Khoury, C. (2019). Making policy on augmented intelligence in health care, AMA Journal of Ethics, Vol. 21(2), 188-191, doi:10.1001/amajethics.2019.188.
  14. Dierks, L.H., (2007). Does trust influence consumer behaviour? Agrarwirtschaft 56, 106-111.
  15. Dhiman, N., Arora, N., Dogra, N. & Gupta, A. (2020). Consumer adoption of smartphone fitness apps: an extendedUTAUT2 perspective. Journal of Indian Business Research, 12(3), 363-388, doi:10.1108/JIBR-05-2018-0158
  16. Esmaili, E., Desa, M.I., Moradi, H. & Hemmati, A. (2011). The Role of Trust and Other Behavioral Intention Determinants on Intention toward Using Internet Banking. International Journal of Innovation, Management and Technology, 2(1), 95-100, doi: 10.7763/IJIMT.2011.V2.111.
  17. Gabriel M. (2019). What does digital transformation really mean, [access: 19.10.2021].
  18. Gao, Y, Li, H. & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare, Industrial Management & Data Systems, 115(9), 1704-1723, doi:10.1108/IMDS-03-2015-0087.
  19. Garattini, C., Raffle, J., Aisyah, D.N., Sartain, F. & Kozlakidis, Z. (2019). Big Data Analytics, Infectious Diseases and Associated Ethical Impacts, Philosophy & Technology, 32, 69–85, doi: 10.1007/s13347-017-0278-y.
  20. Gu, Z., Wei, J. & Xu, F. (2016). An empirical study on factors influencing consumers’ initial trust in wearable commerce, Journal of Computer Information Systems, (56)1, 79-85, doi:10.1080/08874417.2015.11645804.
  21. Ertel, W. (2017). Introduction to Artificial Intelligence, Springer, Cham.
  22. Fang, Y. & Chang, C. (2016). Users’psychological perception and perceived readability of wearable devices for elderly people, Behaviour & Information Technology, 35(3), 225-232, doi:10.1080/0144929X.2015.1114145.
  23. Fornell, C. & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18 (3), 382-388, doi: 10.2307/3150980.
  24. Hair J. F., Sarstedt M., Ringle C. Gudergan S. P. (2013). Advanced Issues in Partial Least Squares Structural Equation Modeling, Sage Publication.
  25. Hajo, A. & Galinsky, A.D. (2012). Enclothed cognition. Journal of Experimental Social Psychology, 48(4), 918-925, doi: 10.1016/j.jesp.2012.02.008.
  26. Hebbar, A. (2017). Augmented intelligence: enhancing human capabilities. In S. Bhattacharyya (Ed.), Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), IEEE, Piscataway, 251-254.
  27. Hoffman, D.L. & Novak, T. (2015), Emergent Experience and the Connected Consumer in the Smart Home Assemblage and the Internet of Things, Washington, DC.
  28. Holroyd, C. (2020). Technological innovation and building a ‘super smart’ society: Japan’s vision of society 5.0. Journal of Asian Public Policy, doi:10.1080/17516234.2020.1749340.
  29. Jarrahi, M.H. (2018). Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586, doi:10.1016/j.bushor.2018.03.007.
  30. Jouhki, J. (2020). The axes of the modern age. Human Technology, 16(1), 1-5, doi:10.17011/ht/urn.202002242160.
  31. Kalantari, M. (2017). Consumers’ adoption of wearable technologies: Literature review, synthesis, and future research agenda. International Journal of Technology Marketing, 12(3), 274-307, doi:10.1504/IJTMKT.2017.089665.
  32. Kamble, A., Desai, S. & Abhang, N. (2021). Wearable Activity Trackers: A Structural Investigation into Acceptance and Goal Achievements of Generation Z. American Journal of Health Education, 52(5), 307-320, doi:10.1080/19325037.2021.1955229.
  33. Kane, K. (2019). The technology fallacy - People are the real key to digital transformation. Research - Technology Management, 62(6), 44-49, doi:10.1080/08956308.2019.1661079.
  34. Kim, T. & Chiu, W. (2019). Consumer acceptance of sports wearable technology: the role of technology readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109-126, doi:10.1108/IJSMS-06-2017-0050.
  35. Kotler, Ph., Kartajaya, H. & Setiawan, I. (2021). Marketing 5.0. Technology for humanity. Jon Willey & Sons Inc. New Jersey.
  36. Lin, C.H., Shih, H.Y. & Sher, P.J. (2007). Integrating technology readiness into technology acceptance: the TRAM model. Psychology & Marketing, 24(7), 641-657, doi:10.1002/mar.20177.
  37. Li, J., Ma, Q., Chan, A.H. & Man, S. (2019). Health monitoring through wearable technologies for older adults: smart wearables acceptance model. Applied Ergonomics, 75, 162-169, doi:10.1016/j.apergo.2018.10.006.
  38. Lisboa, P.J. (2018), AI 2.0: augmented intelligence. In J. Liu, J., J. Lu, Y. Xu, L. Martinez & E.E. Kerre (Eds), Data Science and Knowledge Engineering for Sensing Decision Support: Proceedings of the 13th International FLINS Conference (FLINS 2018), World Scientific Publishing, Singapore.
  39. Liu, D. & Guo, X. (2017). Can trust and social benefit really help? Empirical examination of purchase intentions for wearable devices. Information Development, 33(1), 43-56, doi: 10.1177/0266666916635724.
  40. Liu, X., Vega, K., Maes, P. & Paradiso J.A. (2016). Wearability Factors for Skin Interfaces, Proceedings of the 7th Augmented Human International Conference 2016, ACM Press, New York, 1-8, doi: 10.1145/2875194.2875248.
  41. Lunney, A., Cunningham N. & Eastin M. (2016). Wearable fitness technology: a structural investigation into acceptance and perceived fitness outcomes. Computers in Human Behavior, 65, 114-120, doi:10.1016/j.chb.2016.08.007.
  42. Mann, S. (2014). Wearable computing. In M. Soegaard & R.F. Dam (eds.), The Encyclopedia of Human-Computer Interaction, 2nd Ed. Aarhus, Denmark: The Interaction Design Foundation. Retrieved August 16, 2014, [in:] Mann, S. (2001). Wearable computing: Toward humanistic intelligence. Intelligent Systems, IEEE, 16(3), 10-15.
  43. Mewara, D., Purohit, P. and Rathore, B.P.S. (2016). Wearable devices applications and its future. International Journal For Technological Research In Engineering, International Conference on Emerging Technologies in Engineering, Biomedical, Medical and Science (ETEBMS - 16).
  44. Muaremi, A., Arnrich, B. & Tröster, G. (2013). Towards measuring stress with smartphones and wearable devices during workday and sleep. BioNanoScience, 3(2), 172-183, doi:10.1007/s12668-013-0089-2.
  45. Nascimento, B., Oliveira, T., & Tam, C. (2018). Wearable technology: What explains continuance intention in smartwatches? Journal of Retailing and Consumer Services, 43, 157–169, doi:10.1016/j.jretconser.2018.03.017
  46. Oinas-Kukkonen, H. (2013). A foundation for the study of behavior change support systems. Personal and Ubiquitous Computing, 17, 1223–1235, doi:10.1007/s00779-012-0591-5.
  47. Oh, J.& Kang, H. (2021). User engagement with smart wearables: Four defining factors and a process model.Mobile Media & Communication, 9(2), 314 –335, doi:10.1177/2050157920958440.
  48. Panetta, K. (2019), Gartner Top Strategic Predictions For 2020 And Beyond, [access: 03.10.2021].
  49. Pasquinelli, M. (2015). Alleys of Your Mind: Augmented Intelligence and its Traumas. Meson Press, UK.
  50. Park, S., Chung, K., & Jayaraman, S. (2014). Wearables: Fundamentals, advancements, and a roadmap for the future. In E. Sazonov & M. R. Neuman (Eds.), Wearable sensors, Academic Press, 1-23.
  51. Rieder, A., Eseryel Y.U., Lehrer, C. & Jung R. (2021). Why Users Comply with Wearables: The Role of Contextual Self-Efficacy in Behavioral Change. International Journal of Human - Computer Interaction, 37(3), 281-294, doi:10.1080/10447318.2020.1819669
  52. Rimol, M. (2021). Gartner Forecasts Global Spending on Wearable Devices to Total $81.5 Billion in 2021, [access: 19.10.2021].
  53. Rold, A.C. (2019). The Future of AI is Intelligence Augmentation, [09.10.2021].
  54. Russell, S., Norvig, P. (2016). Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia.
  55. Sachini, N. K., Arachchige, K., Burch V, Chander, H., Turner A.J. & Knight A.C. (2021). The use of wearable devices in cognitive fatigue: current trends and future intentions. Theoretical Issues in Ergonomics Science, doi:10.1080/1463922X.2021.1965670.
  56. Sharma, M. (2019). Augmented intelligence: a way for helping universities to make smarter decisions. In V.S. Rathore, M. Worring, D.K. Mishra, A.Joshi & S. Maheshwari, S. (Eds), Emerging Trends in Expert Applications and Security, Springer, Singapore, 89-95.
  57. Shin, G, Jarrahi, M.H., Fei, Y., Karami, A., Gafinowitz, N., Byun, A. & Lu, X. (2019). Wearable activity trackers, accuracy, adoption, acceptance and health impact: a systematic literature review. Journal of Biomedical Informatics, 93, doi:10.1016/j.jbi.2019.103153.
  58. Tanaka, J.S., Huba, G.J., (1985). A fit index for covariance structure models under arbitrary GLS estimation. British Journal of Mathematical and Statistical Psychology, 38, 197–201,
  59. Vaitkevičius, S., Mažeikienė, E., Bilan, S., Navickas, V., & Savanevičienė, A. (2019). Economic demand formation motives in online-shopping. Inžinerinė ekonomika, 30(5), 631-640.
  60. Venkatesh, V., Thong, J. Y. L. & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
  61. Venkatesh, V., Morris, M.G., Davis, G.B. & Davis, F.D. (2003). User acceptance of information technology: toward a unified view, MIS Quarterly, 27(3), 425-478.
  62. Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204, doi:10.1287/mnsc.
  63. Wright, R., Keith, L. (2014). Wearable technology: If the tech fits, wear it. Journal of Electronic Resources in Medical Libraries, 11(4), 204–216, doi: 10.1080/15424065.2014.969051.
  64. [access: 19.10.2021].
  65. Wang, L., Rau, P. L. P., & Salvendy, G. (2011). Older adults’ acceptance of information technology. Educational Gerontology, 37(12), 1081-1099. doi:10.1080/03601277.2010.500588.
  66. Wearable Devices Market Share, [access: 19.10.2021].
  67. Xiong, J., Chen, J. & Lee, P.S. (2021), Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface, Advanced Materials, 33(19), doi:10.1002/adma.202002640.
  68. Xia, C. & Maes, P. (2013). The design of artifacts for augmenting intellect. In Proceedings of the 4th Augmented Human International Conference, 154-161, doi: 10.1145/2459236.2459263.
  69. Yang, H., Yu, J., Zo, H. & Choi, M. (2016). User acceptance of wearable devices: an extended perspective of perceived value. Telematics and Informatics, 33, 256–269, doi:10.1016/j.tele.2015.08.007.

How to Cite

Sułkowski, Łukasz, & Kaczorowska-Spychalska, D. (2021). Determinants of the adoption of AI wearables - practical implications for marketing. Human Technology, 17(3), 294–320.