Skip to main content Skip to main navigation menu Skip to site footer
Published: 2021-12-31

Added value of motion capture technology for occupational health and safety innovations

University School of Physical Education in Wroclaw, Poland
Wroclaw University of Economics and Business, Poland
Wroclaw University of Economics and Business, Poland
University School of Physical Education in Wroclaw, Poland
University School of Physical Education in Wroclaw, Poland
computer technology motion capture risk assessment ergonomics mobility musculoskeletal disorders


Ergonomic principles in production assembly and manufacturing operations have become an essential part of comprehensive health and safety innovations. We aim to provide new insights into occupational health and safety innovations and how they utilise biomechanical methods and cutting-edge motion capture technology by assessing movements at a workplace. The practical goal is to quantify a connection between work exposure and ergonomic risk measures to determine biomechanical risk factors of diseases or health-related disorders objectively. The target group consisted of 62 factory employees working in manufacturing (26 participants on 12 devices) or assembly areas (36 participants on 9 devices). Body posture, body parts position, movements, energy cost and workloads were assessed using an inertial motion capture (MC) system. MC technology accurately assesses the operator’s movements. The proposed methodology could complement ergonomic procedures in the design of workstations, which is the added value of the motion capture technology for occupational health and safety innovations.


Metrics Loading ...


  1. Antwi-Afari, M. F., Li, H., Edwards, D. J., Pärn, E. A., Seo, J., & Wong, A. Y. L. (2017). Biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. Automation in Construction, 83, 41–47.
  2. Bańkosz, Z., & Winiarski, S. (2020). Statistical Parametric Mapping Reveals Subtle Gender Differences in Angular Movements in Table Tennis Topspin Backhand. International Journal of Environmental Research and Public Health, 17(19), 6996.
  3. Bańkosz, Z., & Winiarski, S. (2021). The Application of Statistical Parametric Mapping to Evaluate Differences in Topspin Backhand between Chinese and Polish Female Table Tennis Players. Applied Bionics and Biomechanics, 2021, 1–11.
  4. Barim, M. S., Sesek, R. F., Capanoglu, M. F., Drinkaus, P., Schall, M. C., Gallagher, S., & Davis, G. A. (2019). Improving the risk assessment capability of the revised NIOSH lifting equation by incorporating personal characteristics. Applied Ergonomics, 74, 67–73.
  5. Beaucage-Gauvreau, E., Robertson, W. S. P., Brandon, S. C. E., Fraser, R., Freeman, B. J. C., Graham, R. B., Thewlis, D., & Jones, C. F. (2019). Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Computer Methods in Biomechanics and Biomedical Engineering, 22(5), 451–464.
  6. Bernard, B. (Ed.). (1997). Musculoskeletal disorders and workplace factors: a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity and low back. NIOSH report No. 97–141
  7. Bhattacharya, A., & McGlothlin, J. D. (Eds.). (2011). Occupational Ergonomics - Theory and Applications (Second Edi). CRC Press Taylor & Francis Group.
  8. Bosch, T., de Looze, M. P., & van Dieën, J. H. (2007). Development of fatigue and discomfort in the upper trapezius muscle during light manual work. Ergonomics, 50(2), 161–177.
  9. Buckle, P. W., & Jason Devereux, J. (2002). The nature of work-related neck and upper limb musculoskeletal disorders. Applied Ergonomics, 33(3), 207–217.
  10. Burton, A. K., Tillotson, K. M., Main, C. J., & Hollis, S. (1995). Psychosocial predictors of outcome in acute and subchronic low back trouble. Spine, 20(6), 722–728.
  11. Chaffin, D. B., Andersson, G., & Martin, B. J. (2006). Occupational biomechanics (4th editio). Wiley-Interscience.
  12. Ciriello, V. M., & Snook, S. H. (1999). Survey of manual handling tasks. International Journal of Industrial Ergonomics, 23(3), 149–156.
  13. Côté, J. N. (2012). A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics, 55(2), 173–182.
  14. Dalgren, A. S., & Gard, G. E. (2013). Soft values with hard impact – a review of stress reducing interventions on group and organisational level. Http://Dx.Doi.Org/10.1179/108331909X12540993897810, 14(6), 369–381.
  15. De Angelis, M., Giusino, D., Nielsen, K., Aboagye, E., Christensen, M., Innstrand, S. T., Mazzetti, G., van den Heuvel, M., Sijbom, R. B. L., Pelzer, V., Chiesa, R., & Pietrantoni, L. (2020). H-work project: Multilevel interventions to promote mental health in smes and public workplaces. International Journal of Environmental Research and Public Health, 17(21), 1–23.
  16. de Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. Journal of Biomechanics, 29(9), 1223–1230.
  17. Derrick, T. R., van den Bogert, A. J., Cereatti, A., Dumas, R., Fantozzi, S., & Leardini, A. (2020). ISB recommendations on the reporting of intersegmental forces and moments during human motion analysis. Journal of Biomechanics, 99, 109533.
  18. Doda, D. V., Wariki, W. M. V., Wungouw, H. I. S., Engka, J. N. A., Pangemanan, D. H. C., Kawatu, P. A. T., Marunduh, S., Polii, H., Sapulete, I. M., & Kaseke, M. M. (2020). Work related low back pain, psychosocial, physical and individual risk factors among nurses in emergency care unit. Enfermería Clínica, 30, 31–35.
  19. Fox, R. R., Lu, M.-L., Occhipinti, E., & Jaeger, M. (2019). Understanding outcome metrics of the revised NIOSH lifting equation. Applied Ergonomics, 81, 102897.
  20. Fu, J., Ma, L., Tsao, L., & Zhang, Z. (2019). Continuous Measurement of Muscle Fatigue Using Wearable Sensors During Light Manual Operations. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11581 LNCS (pp. 266–277). Springer Verlag.
  21. Gallagher, K. M., & Callaghan, J. P. (2015). Early static standing is associated with prolonged standing induced low back pain. Human Movement Science, 44, 111–121.
  22. Garg, A., & Kapellusch, J. M. (2009). Applications of biomechanics for prevention of work-related musculoskeletal disorders. Ergonomics, 52(1), 36–59.
  23. Griffith, L. E., Shannon, H. S., Wells, R. P., Walter, S. D., Cole, D. C., Côté, P., Frank, J., Hogg-Johnson, S., & Langlois, L. E. (2012). Individual participant data meta-analysis of mechanical workplace risk factors and low back pain. American Journal of Public Health, 102(2), 309–318.
  24. Haggarty, P., Valencia, M. E., McNeill, G., Gonzales, N. L., Moya, S. Y., Pinelli, A., Quihui, L., Saucedo, M. S., Esparza, J., Ashton, J., Milne, E., & James, W. P. T. (1997). Energy expenditure during heavy work and its interaction with body weight. British Journal of Nutrition, 77(3), 359–373.
  25. Hanvold, T. N., Kines, P., Nykänen, M., Thomée, S., Holte, K. A., Vuori, J., Wærsted, M., & Veiersted, K. B. (2019). Occupational Safety and Health Among Young Workers in the Nordic Countries: A Systematic Literature Review. Safety and Health at Work, 10(1), 3–20.
  26. Hills, A. P., Mokhtar, N., & Byrne, N. M. (2014). Assessment of Physical Activity and Energy Expenditure: An Overview of Objective Measures. Frontiers in Nutrition, 1.
  27. Hulshof, C. T. J., Pega, F., Neupane, S., van der Molen, H. F., Colosio, C., Daams, J. G., Descatha, A., Kc, P., Kuijer, P. P. F. M., Mandic-Rajcevic, S., Masci, F., Morgan, R. L., Nygård, C.-H., Oakman, J., Proper, K. I., Solovieva, S., & Frings-Dresen, M. H. W. (2021). The prevalence of occupational exposure to ergonomic risk factors: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Environment International, 146, 106157.
  28. Jafari, N., Adams, K., Tavakoli, M., Wiebe, S., & Janz, H. (2018). Usability testing of a developed assistive robotic system with virtual assistance for individuals with cerebral palsy: a case study. Disability and Rehabilitation: Assistive Technology, 13(6), 517–522.
  29. Karatsidis, A., Bellusci, G., Schepers, H., de Zee, M., Andersen, M., & Veltink, P. (2016). Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors, 17(12), 75.
  30. Karimi, A., Dianat, I., Barkhordari, A., Yusefzade, I., & Rohani-Rasaf, M. (2020). A multicomponent ergonomic intervention involving individual and organisational changes for improving musculoskeletal outcomes and exposure risks among dairy workers. Applied Ergonomics, 88, 103159.
  31. Karwowski, W., & Marras, W. S. (2003). Occupational Ergonomics - Principles of Work Design. CRC Press.
  32. Kim, H.-K., & Zhang, Y. (2017). Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim. Ergonomics, 60(4), 563–576.
  33. Kroemer, K. H. E. ., Kroemer, H. B. ., & Kroemer-Elbert, K. E. (2018). Ergonomics: how to design for ease and efficiency (Third Edit). CRC Press.
  34. Laird, R. A., Gilbert, J., Kent, P., & Keating, J. L. (2014). Comparing lumbo-pelvic kinematics in people with and without back pain: a systematic review and meta-analysis. BMC Musculoskeletal Disorders 2014 15:1, 15(1), 1–13.
  35. Lezin, N., & Watkins-Castillo, S. (2018). The Burden of Musculoskeletal Diseases in the United States: Prevalence, Societal and Economic Cost.
  36. Liebsch, C., & Wilke, H. (2021). The effect of multiplanar loading on the intradiscal pressure of the whole human spine: systematic review and meta-analysis. European Cells and Materials, 41, 388–400.
  37. Limbong, I. R., & Widajati, N. (2021). The Correlation between Body Mass Index and Lifting Frequency with Low Back Pain Complaints on Rice Transport Workers in Warehouse of Perum BULOG Subdivre Pematangsiantar. Indian Journal of Forensic Medicine & Toxicology, 15(1), 1168–1174.
  38. Madeleine, P., Mathiassen, S. E., & Arendt-Nielsen, L. (2008). Changes in the degree of motor variability associated with experimental and chronic neck–shoulder pain during a standardised repetitive arm movement. Experimental Brain Research, 185(4), 689–698.
  39. Madeleine, P., Voigt, M., & Mathiassen, S. E. (2008). The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task. Ergonomics, 51(7), 1078–1095.
  40. Marras, W. S., & Karwowski, W. (2006). Fundamentals and Assessment Tools for Occupational Ergonomics (2nd editio). CRC Press Taylor & Francis Group.
  41. Mathiassen, S. E., Burdorf, A., Van Der Beek, A. J., & Hansson, G. Å. (2003). Efficient one-day sampling of mechanical job exposure data—a study based on upper trapezius activity in cleaners and office workers. American Industrial Hygiene Association Journal, 64(2), 196–211.
  42. Mathiassen, S. E., Möller, T., & Forsman, M. (2003). Variability in mechanical exposure within and between individuals performing a highly constrained industrial work task. Ergonomics, 46(8), 800–824.
  43. Mehta, J. P., Lavender, S. A., & Jagacinski, R. J. (2014). Physiological and biomechanical responses to a prolonged repetitive asymmetric lifting activity. Ergonomics, 57(4), 575–588.
  44. Nielsen, K., & Randall, R. (2015). Assessing and addressing the fit of planned interventions to the organizational context. In M. Karanika-Murray & C. Biron (Eds.), Derailed Organizational Interventions for Stress and Well-Being: Confessions of Failure and Solutions for Success (pp. 107–113). Springer Science + Business Media Dordrecht, Netherlands.
  45. Nunes, I. (2009). Ergonomic Risk Assessment Methodologies for Work-Related Musculoskeletal Disorders: A Patent Overview. Recent Patents on Biomedical Engineeringe, 2(2), 121–132.
  46. O’Sullivan, P., Smith, A., Beales, D., & Straker, L. (2017). Understanding Adolescent Low Back Pain From a Multidimensional Perspective: Implications for Management. Journal of Orthopaedic & Sports Physical Therapy, 47(10), 741–751.
  47. Oakley, P. A., Harrison, D. D., Harrison, D. E., & Haas, J. W. (2005). Evidence-based protocol for structural rehabilitation of the spine and posture: review of clinical biomechanics of posture (CBP) publications. The Journal of the Canadian Chiropractic Association, 49(4), 270–296.–296
  48. Openshaw, S., & Taylor, E. (2006). Ergonomics and Design. A Reference Guide. © 2006 Allsteel Inc.
  49. Pałęga, M. (2019). Assessment of the physical load of the waterjet operator using the G. Lehmann method. Multidisciplinary Aspects of Production Engineering, 2(1), 101–107.
  50. Pistolesi, F., & Lazzerini, B. (2020). Assessing the Risk of Low Back Pain and Injury via Inertial and Barometric Sensors. IEEE Transactions on Industrial Informatics, 16(11), 7199–7208.
  51. Polga, D. J., Beaubien, B. P., Kallemeier, P. M., Schellhas, K. P., Lew, W. D., Buttermann, G. R., & Wood, K. B. (2004). Measurement of In Vivo Intradiscal Pressure in Healthy Thoracic Intervertebral Discs. Spine, 29(12), 1320–1324.
  52. Richardson, K. M., & Rothstein, H. R. (2008). Effects of occupational stress management intervention programs: A meta-analysis. Journal of Occupational Health Psychology, 13(1), 69–93.
  53. Roman-Liu, D. (2013). External load and the reaction of the musculoskeletal system – A conceptual model of the interaction. International Journal of Industrial Ergonomics, 43(4), 356–362.
  54. Schabracq, M. J., Winnubst, J. A. M., & Cooper, C. L. (2004). The Handbook of Work and Health Psychology: Second Edition. In The Handbook of Work and Health Psychology: Second Edition. John Wiley and Sons, Ltd.
  55. Shoaf, C., Genaidy, A., Karwowski, W., Waters, T., & Christensen, D. (1997). Comprehensive manual handling limits for lowering, pushing, pulling and carrying activities. Ergonomics, 40(11), 1183–1200.
  56. Sinclair, R. R., Sears, L. E., Probst, T., & Zajack, M. (2010). A Multilevel Model of Economic Stress and Employee Well-Being. In Contemporary Occupational Health Psychology (pp. 1–20). Wiley-Blackwell.
  57. Skals, S., Bláfoss, R., Andersen, L. L., Andersen, M. S., & de Zee, M. (2021). Manual material handling in the supermarket sector. Part 2: Knee, spine and shoulder joint reaction forces. Applied Ergonomics, 92, 103345.
  58. Snook, S. H., & Ciriello, V. M. (1991). The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics, 34(9), 1197–1213.
  59. Solomonow, M., Baratta, R. V., Zhou, B.-H., Burger, E., Zieske, A., & Gedalia, A. (2003). Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. Journal of Electromyography and Kinesiology, 13(4), 381–396.
  60. Soucie, J. M., Wang, C., Forsyth, A., Funk, S., Denny, M., Roach, K. E., & Boone, D. (2011). Range of motion measurements: reference values and a database for comparison studies. Haemophilia, 17(3), 500–507.
  61. Srinivasan, D., & Mathiassen, S. E. (2012). Motor variability in occupational health and performance. Clinical Biomechanics, 27(10), 979–993.
  62. Stubbs, N. B., Fernandez, J. E., & Glenn, W. M. (1993). Normative data on joint ranges of motion of 25- to 54-year-old males. International Journal of Industrial Ergonomics, 12(4), 265–272.
  63. Swain, C. T. V., Pan, F., Owen, P. J., Schmidt, H., & Belavy, D. L. (2020). No consensus on causality of spine postures or physical exposure and low back pain: A systematic review of systematic reviews. Journal of Biomechanics, 102, 109312.
  64. Taibi, Y., Metzler, Y. A., Bellingrath, S., & Müller, A. (2021). A systematic overview on the risk effects of psychosocial work characteristics on musculoskeletal disorders, absenteeism, and workplace accidents. Applied Ergonomics, 95, 103434.
  65. Teufl, W., Miezal, M., Taetz, B., Fröhlich, M., & Bleser, G. (2019). Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLOS ONE, 14(2), e0213064.
  66. van der Windt, D. A. W. M. (2000). Occupational risk factors for shoulder pain: a systematic review. Occupational and Environmental Medicine, 57(7), 433–442.
  67. Waters, T. R., Putz-Anderson, V., Garg, A., & Fine, L. J. (1993). Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749–776.
  68. Woodson, W. E., Tillman, B., & Tillman, P. (1992). Human factors design handbook: information and guidelines for the design of systems, facilities, equipment, and products for human use. McGraw-Hill Education.
  69. Wu, G., & Cavanagh, P. R. (1995). ISB recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics, 28(10), 1257–1261.
  70. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D. D., Cristofolini, L., Witte, H., Schmid, O., & Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics, 35(4), 543–548.
  71. Wu, G., van der Helm, F. C. T., (DirkJan) Veeger, H. E. J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X., Werner, F. W., & Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981–992.
  72. Yunus, M. N. H., Jaafar, M. H., Mohamed, A. S. A., Azraai, N. Z., & Hossain, M. S. (2021). Implementation of Kinetic and Kinematic Variables in Ergonomic Risk Assessment Using Motion Capture Simulation: A Review. International Journal of Environmental Research and Public Health, 18(16), 8342.
  73. Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham, Y., Clark, J., & Perrault, R. (2021). Artificial Intelligence Index Report 2021.

How to Cite

Winiarski, S., Molek-Winiarska, D., Chomątowska, B., Sipko, T., & Dyvak, M. (2021). Added value of motion capture technology for occupational health and safety innovations. Human Technology, 17(3), 235–260.